Tip-enhanced spectroscopy techniques, in particular tip-enhanced Raman spectroscopy (TERS), rely on a localized surface plasmon resonance (LSPR). This LSPR depends on the near field antenna, its material and shape, and the surrounding medium with respect to its relative permittivity and the volume fraction of the optical near field occupied by the sample. Here, we investigate the effects of the surface composition and topography on the change of the LSPR intensity in tip-enhanced spectroscopy on SrTiO nanoislands by monitoring the LSPR enhanced luminescence of gold tips. Our experimental results and analytical estimates indicate that by affecting the effective permittivity of the dielectric environment at the tip apex, the material composition as well as topography of the studied sample induce a change in LSPR intensity. This result significantly helps the understanding of the evolution or origin of the LSPR intensity during a typical TERS measurement, which in turn leads to a more accurate assessment of the relative intensity of different Raman modes in TERS.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.403345DOI Listing

Publication Analysis

Top Keywords

lspr intensity
12
localized surface
8
surface plasmon
8
plasmon resonance
8
tip-enhanced raman
8
raman spectroscopy
8
tip-enhanced spectroscopy
8
change lspr
8
lspr
6
intensity
5

Similar Publications

Plasmonic Ag/PMMA/Eu nanocomposite for sensitive dual mode detection of malachite green.

Biomed Opt Express

January 2025

School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China.

Accurate and efficient determination of malachite green (MG) in aquaculture is crucial for ensuring environment and food safety. Herein, we present a dual-response fluorescence probe based on an Ag/PMMA/Eu nanocomposite for the sensitive detection of MG with low concentration and single droplet. The luminescence properties of the Ag/PMMA/Eu nanocomposite and the fluorescence resonance energy transfer (FRET) effect between Eu and MG are significantly improved due to the localized surface plasmon resonance (LSPR) effect.

View Article and Find Full Text PDF

Interfacial mechanisms of enhanced photoluminescence in AgI-doped red light emitting perovskite quantum dot glass.

J Colloid Interface Sci

January 2025

Institute of Optoelectronic Materials and Devices, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018 PR China. Electronic address:

Red light emitting perovskite quantum dot (PQD) glass, with narrow-band emission and excellent stability, holds great potential for applications in liquid crystal displays. However, its low photoluminescence quantum yield (PLQY) remains the biggest obstacle limiting its practical application. Additionally, the mechanism behind the enhancement of the PLQY is not well understood, which restricts the further improvement of the PLQY in red light emitting PQD glass.

View Article and Find Full Text PDF

This paper is devoted to the investigation of the plasmonic effect of metal nanoparticles (NPs) formed on the surface of the YAG: Bi, Ce, Yb phosphors in a temperature range between 4 and 300 K. Combination of a thin conversion layer with silver plasmonic nanostructures leads to increase of sensitizer absorption and emission efficiency. Enhancement of Bi luminescence in YAG epitaxial films with Ag NPs was observed upon cooling the samples below 200 K.

View Article and Find Full Text PDF

A series of Ag-loaded and oxygen vacancy (OV)-containing BiOBr/BiOI (Ag/BiOBr/BiOI) photocatalysts with varying Ag loading levels were synthesized via the solvothermal-photocatalytic reduction method. As confirmed via optical, photoelectrochemical, and 4-chlorophenol photodegradation experiments, a low Ag loading level significantly enhanced the photogenerated charge carrier (PCC) transfer on the BiOBr/BiOI semiconductor surface and the performance of Ag/BiOBr/BiOI photocatalysts, which was attributable to the synergism between the effect of OVs and the localized surface plasmon resonance (LSPR) of Ag nanoparticles. Additionally, BiOBr/BiOI heterojunctions facilitated efficient visible-light harvesting and PCC separation.

View Article and Find Full Text PDF

According to the fluorescence internal filtering effect (IFE), the more the absorption spectrum of the quencher overlaps with the excitation and emission spectra of the fluorescent substance, the better the quenching effect and, correspondingly, the more significant and sensitive the contrast becomes when the fluorescence is turned on. Thus, in the competitive fluorescence-quenching lateral flow immunoassays (FQ-LFIAs), the fluorescence quencher with an outstanding optical property is of great importance. Herein, gold nanoparticles (AuNPs) and polydopamine (PDA) coengineered covalent organic frameworks (COF/Au@PDA) were synthesized as a fluorescence quencher to increase spectral overlap.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!