Bio-inspired adhesive hydrogels have been applied to cell and drug delivery systems to address various tissue defects and disorders. However, adhesive hydrogels functionalized with phenolic moieties often lack osteoconductive capacity and mechanical properties for bone regeneration. In this study, we utilized the versatile chemical interactions of phenolic moieties to overcome such limitations in bone tissue engineering efforts. Highly osteoconductive hybrid hydrogel patches were fabricated by incorporating inorganic minerals, hydroxyapatite (HAP), or whitlockite (WKT), into pyrogallol-conjugated hyaluronic acid (HA-PG). The hybrid HA-PG patches exhibited improved mechanical strength and reinforced structural/physical properties owing to additional intermolecular complexation between oxidized PG moieties and ions released from inorganic particles. The sustained release of bone morphogenetic protein-2 (BMP-2) from hybrid patches was prolonged by combination of the inherent nucleophilic affinity of oxidized PG and electrostatic interactions between inorganic particles and BMP-2. With increased osteoconductivity, hybrid patches with HAP or WKT enhanced the osteogenic differentiation of human stem cells while also promoting new bone formation in a critical-sized calvarial defect. Our study demonstrates a translational potential of phenolic adhesive hydrogels engineered with inorganic minerals for orthopedic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2020.09.006 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
This study explores the use of chicken egg white (EW), a rich source of natural proteins, to address challenges in wound healing management. Herein, a novel Zn-infused EW/GelMA (EW/Gel) hybrid hydrogel is developed, featuring an interpenetrating network (IPN) structure, where the first network consists of photo-cross-linked GelMA and the second network consists of Zn-infused EW (Zn-EW) through ion-protein binding. By optimizing the design and formulation, the resulting Zn-EW/Gel hydrogel exhibited enhanced mechanical stability and self-adhesive properties.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China.
Myocardial infarction (MI) is a leading cause of mortality among cardiovascular diseases. Following MI, the damaged myocardium is progressively being replaced by fibrous scar tissue, which exhibits poor electrical conductivity, ultimately resulting in arrhythmias and adverse cardiac remodeling. Due to their extracellular matrix-like structure and excellent biocompatibility, hydrogels are emerging as a focal point in cardiac tissue engineering.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China. Electronic address:
The accurate and reliable quantification of the levels of disease markers in human sweat is of significance for health monitoring through wearable sensing technology, but the sensors performed in real sweat always suffer from biofouling that cause performance degradation or even malfunction. We herein developed a wearable antifouling electrochemical sensor based on a novel multifunctional hydrogel for the detection of targets in sweat. The integration of polyethylene glycol (PEG) into the sulfobetaine methacrylate (SBMA) hydrogel results in a robust network structure characterized by abundant hydrophilic groups on its surface, significantly enhancing the PEG-SBMA hydrogel's antifouling and mechanical properties.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
"Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41 A Gr. Ghica Voda Alley, 700487, Iasi, Romania. Electronic address:
Conductive hydrogels are an appealing class of "smart" materials with great application potential, as they combine the stimuli-responsiveness of hydrogels with the conductivity of magnetic fillers. However, fabricating multifunctional conductive hydrogels that simultaneously exhibit conductivity, self-healing, adhesiveness, and anti-freezing properties remains a significant challenge. To address this issue, we introduce here a freeze-thawing approach to develop versatile, multiresponsive composite cryogels able to preserve their features under low-temperature conditions.
View Article and Find Full Text PDFInt J Pharm
January 2025
Key Laboratory of Biopharmaceutical Preparation and Delivery, State Key Laboratory of Biochemical Engineering, Chinese Academy of Sciences, Beijing 100190 China; Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 China. Electronic address:
Trauma healing is the process of healing after the body has been subjected to an external force and the skin and other tissues have become dissected or defective, showing the synergistic effect of various processes. Therefore, the investigation of innovative wound dressings has significant research and clinical implications. In this study, we constructed a zinc based metal-organic framework (MOF) and loaded with antimicrobial peptide LL37 to prepare LL37@ZPF-2 (ZPF = zeolite pyrimidine backbone), which was subsequently integrated with Poloxamer 407 to fabricate LL37@ZPF-2 thermosensitive hydrogel.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!