Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Esophageal squamous cell carcinoma (ESCC) is the main type of esophageal cancer (EC) worldwide, causing half a million deaths each year. Recent evidence has demonstrated the role of the gut microbiota in health and disease. However, our current understanding of the gut microbiome in EC remains scarce. Here, we characterized the gut and esophageal microbiome in a metastatic mouse model of ESCC and examined the functional roles of the gut microbiota in EC development in fecal microbiota transplantation (FMT) experiments. Nude mice intraperitoneally xenografted with human EC-109 cells showed significant alterations in the overall structure, but not alpha diversity, of the gut and esophageal microbiome as compared to naïve control mice. Xenograft of EC cells depleted the order in the gut microbiome, and enriched multiple predicted metabolic pathways, including those involved in carbohydrate and lipid metabolism, in the esophageal microbiome. FMT of stool from healthy mice to antibiotic-treated xenograft-bearing mice significantly attenuated liver metastasis, suggesting a protective role of the commensal gut microbiota in EC. Moreover, we showed that combination chemotherapy with cisplatin and 5-fluorouracil, and the anti-EC medicinal herb (AP) differentially affected the gut and esophageal microbiome in EC. FMT experiment revealed a reduced anti-metastatic efficacy of AP on liver metastasis in antibiotic-treated xenograft-bearing mice, suggesting a role of the commensal gut microbiota in the anti-metastatic efficacy of the herb. In conclusion, our findings reveal for the first time an interplay between the gut microbiota and EC and provide insights into the treatment strategies for EC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7471341 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!