Introduction: A disintegrin and metallopeptidase with thrombospondin motifs (ADAMTSs), whose expression is dysregulated in various cancers, is implicated in cancer development. Herein, we aimed to investigate the functional role of ADAMTS8 in breast cancer (BC) and explore the underlying mechanisms.
Methods: The protein expression of ADAMTS8 in BC cell lines and tumor tissues from BC patients was quantified by Western blot. ADAMTS8 overexpression was induced by transfection with pEZ-M90-ADAMTS8 plasmid using lipofectamine 2000. To generate ADAMTS8 stable knockdown cells, MDA-MB-231 cells were transfected with psi-H1-ADAMTS8siRNA plasmids. Cell counting kit-8 (CCK-8) assay, wound-healing assay, transwell assay and flow cytometry assay were employed to analyze the effects of ADAMTS8 on the proliferation, migration, invasion and apoptosis of BC cells. Chemosensitivity also was assessed using CCK-8 assay. The expressions of β-catenin, MMP-7 and c-Myc were measured by Western blot.
Results: Our results showed that ADAMTS8 expression was significantly lower in BC tissues than that in adjacent non-tumor tissues. Overexpression of ADAMTS8 in MDA-MB-453 cells could inhibit the cell proliferation, migration and invasion and promote apoptosis. ADAMTS8 knockdown displayed the reverse effect in MDA-MB-231 cells. Consistently, in vivo data showed that ADAMTS8 overexpression led to a reduction in tumor growth. In addition, chemosensitivity testing in MDA-MB-453 cells transfected with pEZ-M90-ADAMTS8 plasmid indicated that cisplatin inhibited cell growth dramatically. Furthermore, attenuated β-catenin, MMP-7 and c-Myc level was detected after ADAMTS8 overexpression.
Conclusion: These results indicate that increased ADAMTS8 expression could modify the progression of BC by inhibiting cell proliferation and invasion while promoting the apoptosis of BC cells. Thus, ADAMTS8 represents a potential therapeutic target for BC therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7457586 | PMC |
http://dx.doi.org/10.2147/OTT.S248085 | DOI Listing |
Animals (Basel)
October 2024
College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010010, China.
The growth and development of muscle tissue play a pivotal role in the economic value and quality of meat in agricultural animals, garnering close attention from breeders and researchers. The quality and palatability of muscle tissue directly determine the market competitiveness of meat products and the satisfaction of consumers. Therefore, a profound understanding and management of muscle growth is essential for enhancing the overall economic efficiency and product quality of the meat industry.
View Article and Find Full Text PDFCell Host Microbe
October 2024
Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada; School of Computing, Queen's University, Kingston, ON K7L 3N6, Canada. Electronic address:
Ther Adv Respir Dis
August 2024
Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Wuhua District, Kunming 650032, China.
Pulmonary hypertension (PH) is a chronic progressive disease with high mortality. There has been more and more research focusing on the role of AMPK in PH. AMPK consists of three subunits-α, β, and γ.
View Article and Find Full Text PDFmedRxiv
April 2024
Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
Investigating the genetic factors influencing human birth weight may lead to biological insights into fetal growth and long-term health. Genome-wide association studies of birth weight have highlighted associated variants in more than 200 regions of the genome, but the causal genes are mostly unknown. Rare genetic variants with robust evidence of association are more likely to point to causal genes, but to date, only a few rare variants are known to influence birth weight.
View Article and Find Full Text PDFInt J Mol Sci
January 2024
Department of Internal Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea.
The progression of idiopathic pulmonary fibrosis (IPF) is diverse and unpredictable. We identified and validated a new biomarker for IPF progression. To identify a candidate gene to predict progression, we assessed differentially expressed genes in patients with advanced IPF compared with early IPF and controls in three lung sample cohorts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!