GPA Peptide-Induced Nur77 Localization at Mitochondria Inhibits Inflammation and Oxidative Stress through Activating Autophagy in the Intestine.

Oxid Med Cell Longev

Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China.

Published: May 2021

Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is a chronic inflammatory disease affecting the colon, and its incidence is rising worldwide. Nur77, belongs to the NR4A subfamily of nuclear hormone receptors, plays a critical role in controlling the pathology of colitis. The aim of this study is to investigate the protection effect and mechanism of Gly-Pro-Ala (GPA) peptide, isolated from fish skin gelatin hydrolysate, in a mouse model of dextran sulfate sodium- (DSS-) induced colitis and intestinal epithelial cells (IECs) stimulated by lipopolysaccharide (LPS). In vivo, GPA treatment alleviates DSS-induced weight loss, disease activity index (DAI) increase, colon length shortening, and colonic pathological damage. Production of proinflammatory cytokines, ROS, and MDA is significantly decreased by GPA treatment. In vitro, GPA significantly inhibits proinflammatory cytokine production, cytotoxicity, ROS, and MDA in IECs. Furthermore, GPA induces autophagy to suppress inflammation and oxidative stress. GPA promotes Nur77 translocation from the nucleus to mitochondria where it facilitates Nur77 interaction with TRAF6 and p62, leading to the induction of autophagy. In addition, GPA contributed to the maintenance of tight junction architecture in vivo and in vitro. Taken together, GPA, as a Nur77 modulator, could exert anti-inflammatory and antioxidant effects by inducing autophagy in IECs, suggesting that GPA may be promising for the prevention of colitis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7456482PMC
http://dx.doi.org/10.1155/2020/4964202DOI Listing

Publication Analysis

Top Keywords

gpa
10
inflammation oxidative
8
oxidative stress
8
gpa treatment
8
ros mda
8
vitro gpa
8
nur77
5
gpa peptide-induced
4
peptide-induced nur77
4
nur77 localization
4

Similar Publications

Exploration of the dynamics of otic capsule and intracochlear pressure: Numerical insights with experimental validation.

J Acoust Soc Am

January 2025

Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland.

The otic capsule and surrounding temporal bone exhibit complex 3D motion influenced by frequency and location of the bone conduction stimulus. The resultant correlation with the intracochlear pressure is not sufficiently understood, thus is the focus of this study, both experimentally and numerically. Experiments were conducted on six temporal bones from three cadaver heads, with BC hearing aid stimulation applied at the mastoid and classical BAHA locations across 0.

View Article and Find Full Text PDF

Microfluidic-assisted sol-gel preparation of monodisperse mesoporous silica microspheres with controlled size, surface morphology, porosity and stiffness.

Nanoscale

January 2025

National Engineering Research Center for Colloidal Materials, School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, P. R. China.

The controllable synthesis of monodisperse mesoporous silica microspheres with unique physicochemical properties is becoming increasingly important for a variety of applications such as catalysts, chromatography, drug delivery and sensors. Here, we report a facile microfluidic-assisted sol-gel method for the preparation of silica microspheres with precisely controlled properties such as the size of the microspheres, the surface morphology, porosity and stiffness. All these properties can be manipulated by changing specific synthesis parameters, such as changing the microfluidic channels to tune the size of the microdroplets (tens to hundreds of microns), changing the contents of the precursor solution to manipulate the surface morphology (wrinkled to smooth surface) and changing the gelation/annealing conditions to tune the porosity (surface area up to 1021 m g) and stiffness of the microspheres (elastic modulus tunable from 0.

View Article and Find Full Text PDF

Underwater Superoleophobic and Transparent Films with Mechanical Robustness and High Durability in Harsh Environments.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.

Underwater superoleophobic and transparent (UST) films are promising in applications, such as advanced optical devices in marine environments. However, the mechanical robustness and durability in harsh environments of the existing UST films are still unsatisfactory. In this work, we present a free-standing nacre-inspired mineralized UST (NIM-UST) film with high aragonite content and excellent mechanical properties toward robust underwater superoleophobicity on two surfaces and transparency (94%) in harsh seawater environments.

View Article and Find Full Text PDF

Enthalpy is often the focal point when designing monomers for polymer circularity, but much less is explored on how entropy can be exploited to create polymers with synergistic circularity and properties. Here, we design a series of spiro-lactones (SLs) with closed-chain cycloalk(en)yl substituents at the α,α-position of δ-valerolactone (δVL), which, when combined with the parent δVL and -α,α-dialkyl-substituted δVL with open-chain alkyl groups, provide a desired platform for exploring the circular polymer design by focusing on the entropy change of polymerization. These SLs exhibit finely balanced (de)polymerizability that is regulated chiefly by entropy differentiation, allowing both the facile synthesis of polyester PSLs ( up to 1000 kg mol) in a living fashion and selective depolymerization of the PSLs to completely recover monomers under mild conditions (using a recyclable catalyst at 100 °C).

View Article and Find Full Text PDF

The structural stability of the energetic material 2,2',4,4',6,6'-hexanitrostilbene (-HNS) under high pressure is critical for optimizing its detonation performance and low sensitivity. However, its structural response to external pressure has not been sufficiently investigated. In this study, high-pressure single-crystal X-ray diffraction data of -HNS demonstrate that the sample exhibits pronounced anisotropic strain, demonstrating an unusual negative linear compressibility (NLC) along the axis, with a coefficient of -4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!