Barium blockade of the KcsA channel in open and closed conformation datasets.

Data Brief

Department of Biochemistry and Molecular Biology, University of Chicago, Gordon Center for Integrative Science, 929 E 57th St, Chicago 60637 IL, United States.

Published: October 2020

Barium is a potent blocker of the KcsA potassium channel. A strategy using x-ray crystallography and molecular dynamics (MD) simulation has been used to understand this phenomenon as described in Rohaim et al. [1]. Wild type KcsA is purified to homogeneity and crystallized in low and high K conditions. Crystals are grown using the hanging drop vapor diffusion method. To examine barium binding in the selectivity filter of KcsA, the crystals are systemically soaked in various concentrations of barium chloride solution. X-ray crystallography datasets are collected at the Advanced Photon Source. A total of 10 datasets are collected for various barium ion concentrations. Diffraction data are processed using the crystallography pipeline software RAPID. The crystal structures are solved by molecular replacement methods. The structure models are visualized using COOT and refined using REFMAC. Anomalous map coefficients are calculated using the phenix.maps tool in the PHENIX software suite. The datasets are deposited in the Protein Data Bank. The data provides a detailed picture of barium ion interaction with potassium channels. Structural analysis of the KcsA channel reveals two distinct configurations, open- and closed- state. Further MD simulation analysis suggests an energetically favorable binding mechanism for barium ion in the selectivity filter. The data could be used to interpret functional experiments related to barium blockade for potassium channels. Also, it is valuable for comparison and cross validation with other relevant potassium channel structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7452694PMC
http://dx.doi.org/10.1016/j.dib.2020.106135DOI Listing

Publication Analysis

Top Keywords

barium ion
12
barium
8
barium blockade
8
kcsa channel
8
potassium channel
8
x-ray crystallography
8
selectivity filter
8
datasets collected
8
potassium channels
8
kcsa
5

Similar Publications

The involvement of neurons in the peripheral nervous system is crucial for bone regeneration. Mimicking extracellular matrix cues provides a more direct and effective strategy to regulate neuronal activity and enhance bone regeneration. However, the simultaneous coupling of the intrinsic mechanical-electrical microenvironment of implants to regulate innervated bone regeneration has been largely neglected.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how varying concentrations of Zn ions affect the optical properties of BaNiZnFeO ferrites, showcasing the ability to tune the band gap through Zn doping.
  • X-ray diffraction (XRD) confirmed that the material maintained a single-phase structure and exhibited changes in grain size and lattice parameters with increased Zn content.
  • UV-visible spectroscopy demonstrated that the band gap and electrical properties improved with higher Zn concentrations, indicating potential uses in optoelectronics and energy storage applications.
View Article and Find Full Text PDF

A new twofold interpenetrated 3D metal-organic framework (MOF), namely, poly[[μ-aqua-diaqua{μ-2,2'-[terephthaloylbis(azanediyl)]diacetato}barium(II)] dihydrate], {[Ba(CHNO)(HO)]·2HO}, (I), has been assembled through a combination of the reaction of 2,2'-[terephthaloylbis(azanediyl)]diacetic acid (TPBA, HL) with barium hydroxide and crystallization at low temperature. In the crystal structure of (I), the nine-coordinated Ba ions are bridged by two μ-aqua ligands and two carboxylate μ-O atoms to form a 1D loop-like Ba-O chain, which, together with the other two coordinated water molecules and μ-carboxylate groups, produces a rod-like secondary building unit (SBU). The resultant 1D polynuclear SBUs are further extended into a 3D MOF via the terephthalamide moiety of the ligand as a spacer.

View Article and Find Full Text PDF
Article Synopsis
  • Barium fluoride borosilicate glass samples, reinforced with varying amounts of GdO, were created to study their structural, physical, and optical properties as well as their ability to attenuate γ-rays.
  • X-ray diffraction confirmed the glasses were amorphous, and did show slight increases in density and molar volume with more GdO.
  • UV-Vis spectra indicated increased absorbance and shifts in optical properties, suggesting that these materials could be useful for opto-electronic devices and radiation shielding.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!