Background: The clinical use of Doxorubicin (Dox) is significantly limited by its dose-dependent cardiotoxic side effect. Accumulative evidence suggests that the use of flavonoids, such as the antioxidative Pinocembrin (Pin), could be effective in the prevention of Dox-induced cardiotoxicity. Accordingly, we investigated the ability of pinocembrin (Pin) to attenuate Dox-induced cardiotoxicity in an in vitro H9c2 cardiomyoblast model.
Methodology: The cardioprotective potential of Pin was established in H9c2 cells. Here, cells were treated with Dox (2μM), Dox (2μM) + Pin (1μM), and Dox (2μM) + Dexrazoxane (20μM) for 6 days. Thereafter, the safe co-administration of Pin with Dox, in a cancer environment, was investigated in MCF-7 breast cancer cells subjected to the same experimental conditions. Untreated cells served as the control. Subsequently, Pin's ability to attenuate Dox-mediated oxidative stress, impaired mitochondrial bioenergetics and potential, as well as aggravated apoptosis was quantified using biochemical assays.
Results: The results demonstrated that co-treatment with Pin mitigates Dox-induced oxidative stress by alleviating the antioxidant enzyme activity of the H9c2 cells. Pin further reduced the rate of apoptosis and necrosis inferred by Dox by improving mitochondrial bioenergetics. Interestingly, Pin did not decrease the efficacy of Dox but, rather increased the rate of apoptosis and necrosis in Dox-treated MCF-7 cells.
Conclusion: The findings presented in this study showed, for the first time, that Pin attenuates Dox-induced cardiotoxicity without reducing its chemotherapeutic effect. We propose that additional studies, using in vivo models, should be conducted to further investigate Pin as a suitable candidate in the prevention of the cardiovascular dysfunction inferred by Dox administration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7438920 | PMC |
http://dx.doi.org/10.3389/fphar.2020.01172 | DOI Listing |
Semin Cancer Biol
January 2025
School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Beijing 100029, China; Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing 100029, China. Electronic address:
Doxorubicin (DOX) is an anthracycline antitumor drug discovered in 1969, which can care for leukemia, breast cancer, lymphoma, and sarcoma. However, cardiotoxicity induced by DOX seriously limits its clinical value. The etiopathogenesis and therapeutic strategies are not unified.
View Article and Find Full Text PDFCurr Cancer Drug Targets
January 2025
Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning, China.
Introduction: The cardiotoxicity and subsequent Heart Failure (HF) induced by Doxorubicin (DOX) limit the clinical application of DOX. Valsartan (Val) is an angiotensin II receptor blocker that could attenuate the HF induced by DOX. However, the underlying mechanism of Val in this process is not fully understood.
View Article and Find Full Text PDFCardiovasc Toxicol
January 2025
Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland.
Doxorubicin (DOX) is an important drug used in the treatment of many malignancies. Unfortunately DOX causes various side effects, with cardiotoxicity being the most characteristic. Risk factors for DOX induced cardiotoxicity (DIC) include cumulative dose of DOX, preexisting cardiovascular diseases, dyslipidemia, diabetes, smoking, along with the use of other cardiotoxic agents.
View Article and Find Full Text PDFChin J Integr Med
January 2025
Department of Cardiovascular Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
Objective: To explore the molecular mechanism of Shenmai Injection (SMI) against doxorubicin (DOX) induced cardiomyocyte apoptosis.
Methods: A total of 40 specific pathogen-free (SPF) male Sprague Dawley (SD) male rats were divided into 5 groups based on the random number table, including the control group, the model group, miR-30a agomir group, SMI low-dose (SMI-L) group, and SMI high-dose (SMI-H) group, with 8 rats in each group. Except for the control group, the rats were injected weekly with DOX (2 mg/kg) in the tail vein for 4 weeks to induce myocardial injury, and were given different regimens of continuous intervention for 2 weeks.
Cardiovasc Drugs Ther
January 2025
Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
Purpose: Doxorubicin (Dox) is a classic anthracycline chemotherapy drug with cause cumulative and dose-dependent cardiotoxicity. This study aimed to investigate the potential role and molecular mechanism of phenylacetylglutamine (PAGln), a novel gut microbiota metabolite, in Dox-induced cardiotoxicity (DIC).
Methods: DIC models were established in vivo and in vitro, and a series of experiments were performed to verify the cardioprotective effect of PAGln.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!