Proteases can be used in several biotechnological processes including detergent, food and leather industries. In the leather industry, dehairing is carried out by chemicals, which pollute the environment. Therefore, to make the hair removal process environmentally friendly, a protease produced by has been purified, biochemically characterized and had an efficient ability to remove hair from bovine leather. The protease was produced using 1% wheat bran and was purified 2.3-fold using two chromatographic steps showing a molecular weight of 90 kDa. Optimal temperature and pH were 50 °C and 6.5, respectively. Thermal stability was up to 1 h at 50 °C. Protease was stable to detergents like Tween 80 and to organic solvents. The activity was activated by Ca and inhibited by Hg and Cu. The enzyme was classified as serine protease, by the inhibition by PMSF and was stable to reducing agents. It hydrolyzed casein, azocasein, BSA, egg albumin and BTpNA. The Km and Vmax values were 0.65 ± 0.03 mg/mL and 3.66 ± 0.18 μmol/min, respectively. Remarkable properties about temperature, pH, stability to detergents and reducing agents ensure that the protease from can be an excellent candidate for industrial applications, particularly in the leather industry.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10826068.2020.1815058DOI Listing

Publication Analysis

Top Keywords

leather industry
12
environmentally friendly
8
protease produced
8
reducing agents
8
protease
6
leather
5
biochemical characterization
4
characterization partially
4
partially purified
4
purified protease
4

Similar Publications

Application of zeolites for efficient tannery wastewater remediation.

Environ Sci Pollut Res Int

December 2024

Stazione Sperimentale Per L'industria Delle Pelli E Delle Materie Concianti S.R.L., 80143, Napoli, Italy.

Leather manufacturing is the process of converting raw animal hides or skins into finished leather. The complex industrial procedures result in a tanning effluent composed of chemical compounds with potentially hazardous impacts on humans and ecosystems. Among the traditional and efficient wastewater treatments, adsorption is an effective and well-known approach, able to manage a wide range of contaminants from wastewater.

View Article and Find Full Text PDF

Fluorescence fingerprinting is a technique to uniquely characterize water samples based on their distinct composition of dissolved organic matter (DOM) measured via 3D fluorescence spectroscopy. It is an effective tool for monitoring the chemical composition of various water systems. This study examines a river affected by several municipal and industrial wastewater treatment plant (WWTP) effluents and aims to source-tracing them via fluorescence fingerprints based on parallel factor analysis (PARAFAC) components.

View Article and Find Full Text PDF

The disposal of municipal solid waste (MSW) in urban areas is a big issue nowadays in most of the countries. Developing countries like India are struggling with the continuous indiscriminate disposal of MSW due to rapid increase in the urbanization, industrialization, and human population growth. The mismanagement of MSW causes adverse environmental impacts, public health risks, and other socio-economic problems.

View Article and Find Full Text PDF

Grain-Boundary-Rich Pt/CoO Nanosheets for Solar-Driven Overall Water Splitting.

Inorg Chem

December 2024

Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.

Interfacial engineering is considered an effective strategy to improve the electrochemical water-splitting activity of catalysts by modulating the local electronic structure to expose more active sites. Therefore, we report a platinum-cobaltic oxide nanosheets (Pt/CoO NSs) with plentiful grain boundary as the efficient bifunctional electrocatalyst for water splitting. The Pt/CoO NSs exhibit a low overpotential of 55 and 201 mV at a current density of 10 mA cm for the hydrogen evolution reaction and oxygen evolution reaction in 1.

View Article and Find Full Text PDF

The environmental burden of tannery wastewater, characterized by high levels of total dissolved solids (TDS) and other contaminants, presents a significant challenge for sustainable water management. This study addresses this issue by developing a novel polyvinyl alcohol (PVA) and polyvinyl chloride (PVC) composite membrane optimized for efficient TDS removal from tannery effluent. The membrane was fabricated using a solution casting technique, with glutaraldehyde employed as a crosslinking agent to enhance mechanical properties and stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!