Pharmacological modulation of cannabinoid type 2 receptor (CBR) holds promise for the treatment of numerous conditions, including inflammatory diseases, autoimmune disorders, pain, and cancer. Despite the significance of this receptor, researchers lack reliable tools to address questions concerning the expression and complex mechanism of CBR signaling, especially in cell-type and tissue-dependent contexts. Herein, we report for the first time a versatile ligand platform for the modular design of a collection of highly specific CBR fluorescent probes, used successfully across applications, species, and cell types. These include flow cytometry of endogenously expressing cells, real-time confocal microscopy of mouse splenocytes and human macrophages, as well as FRET-based kinetic and equilibrium binding assays. High CBR specificity was demonstrated by competition experiments in living cells expressing CBR at native levels. The probes were effectively applied to FACS analysis of microglial cells derived from a mouse model relevant to Alzheimer's disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.0c05587 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!