Background: Based on whole-genome sequencing technology our aim is to explore the expression of the alpha-thalassemia trait during menopause period at the 6mA methylation site and evaluate the significance in clinical diagnosis.
Methods: In this study, we collected peripheral blood from the women in the postmenopausal period in our hospital and used the method of (ChIP-seq) immunoprecipitation assay combined with next genome sequencing technology to select the 6mA site and differentially expressed genes and KEGG pathways and thereby investigate the clinical significance of the 6mA methylation site in women with thalassemia.
Results: A total of 38,879 methylation sites were selected, covering a wide range of CpG island and reference sequence genes. Methylation sites are located in different regions of the gene. PKA, PIK3C, CREB1, HSP90A, ITPR1, HSPA, and SOS were significantly enriched at the 6mA radicalization site and KEGG pathways, p < 0.01.
Conclusions: The 6mA methylation site of alpha-thalassemia trait in menopause was less distributed than that of healthy controls and mainly distributed in introns. Estrogen signaling pathways may affect alpha-thalassemia in menopause through the 6mA methylation of differentially expressed genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.7754/Clin.Lab.2020.190502 | DOI Listing |
New Phytol
March 2025
National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China.
DNA methylation consists of 5-methylcytosine and N6-methyl deoxyadenosine (6mA) and is crucial in plant development. However, its specific role and potential mechanism to initiate cotton fibers remain unclear. This study employed Oxford Nanopore Technologies (ONT) sequencing to analyze DNA methylation alterations in ZM24 and ZM24 fuzzless-lintless (ZM24fl) during fiber initiation.
View Article and Find Full Text PDFElife
February 2025
Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.
Bacterial pathogens employ epigenetic mechanisms, including DNA methylation, to adapt to environmental changes, and these mechanisms play important roles in various biological processes. is a model phytopathogenic bacterium, but its methylome is less well known than that of other species. In this study, we conducted single-molecule real-time sequencing to profile the DNA methylation landscape in three model pathovars of .
View Article and Find Full Text PDFPlanta
February 2025
NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK.
This review discusses the DNA and RNA methylation pathways and their biological roles in Rosaceae developmental processes relevant for breeding and production. The Rosaceae is a plant family of great importance for human nutrition and health. Many traits and developmental processes of the Rosaceae are influenced by epigenetic methylation, functions of which are now being unravelled in several important species of this family.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
DNA N6-methyladenine (6mA) is a potential epigenetic mark involved in gene transcription in eukaryotes, yet the regulatory mechanism governing its methyltransferase (MTase) activity remains obscure. Here, we exploited the 6mA MTase AMT1 to elucidate its auto-regulation in the unicellular eukaryote Tetrahymena thermophila. The detailed endogenous localization of AMT1 in vegetative and sexual stages revealed a correlation between the 6mA reestablishment in the new MAC and the occurrence of zygotically expressed AMT1.
View Article and Find Full Text PDFCurr Environ Health Rep
January 2025
Institute for Society and Genetics, University of California, Boyer Hall, Room 332, 611 Charles E Young Dr E., UCLA, Los Angeles, CA, 90095, USA.
Purpose Of Review: The burgeoning field of environmental epigenetics has revealed the malleability of the epigenome and uncovered numerous instances of its sensitivity to environmental influences; however, pinpointing specific mechanisms that tie together environmental triggers, epigenetic pathways, and organismal responses has proven difficult. This article describes how Caenorhabditis elegans can fill this gap, serving as a useful model for the discovery of molecular epigenetic mechanisms that are conserved in humans.
Recent Findings: Recent results show that environmental stressors such as methylmercury, arsenite, starvation, heat, bacterial infection, and mitochondrial inhibitors can all have profound effects on the epigenome, with some insults showing epigenetic and organismal effects for multiple generations.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!