Systemic antibiotic therapy is the main treatment for acute bacterial rhinosinusitis (ABRS). However, this treatment often causes side effects of dizziness, diarrhea, and drug resistance. In this study, a new polyethylene glycol hydrogel (PEG-H) treatment model is developed to achieve sustained release of drugs at the locality while avoiding those adverse effects. The PEG-H is composed of 4-arm-PEG-SH and silver ions through a high affinity and dynamic reversible coordination bond between the thiol and silver ion. In the initial test, PEG-H is loaded with Clarithromycin (CAM-Lips@Hydrogel) or Clarithromycin and Budesonide liposomes (CAM+BUD-Lips@Hydrogel). The results show that PEG-H maintains the characteristics of self-healing, biodegradability, moderate swelling rate, injectibility and sustained drug release. In in vivo studies, the hydrogel is injected into the maxillary sinus of ABRS rabbit models. In both a single or combined load, the hydrogel not only plays an effective role as an anti-bacterial, but also inhibits inflammatory response of local sinus mucosa. In addition, no other side effects are observed in the ABRS rabbit model through behavioral observation and drug sensitivity tests. Therefore, the injectable self-healing hydrogel with anti-bacterial and anti-inflammatory properties provides a new micro invasive therapeutic method for the clinical treatment of ABRS.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202001032DOI Listing

Publication Analysis

Top Keywords

injectable self-healing
8
self-healing hydrogel
8
hydrogel anti-bacterial
8
anti-bacterial anti-inflammatory
8
anti-inflammatory properties
8
acute bacterial
8
bacterial rhinosinusitis
8
micro invasive
8
side effects
8
abrs rabbit
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!