A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Resveratrol protects retinal ganglion cells against ischemia induced damage by increasing Opa1 expression. | LitMetric

Resveratrol protects retinal ganglion cells against ischemia induced damage by increasing Opa1 expression.

Int J Mol Med

Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Nanchang, Jiangxi 330006, P.R. China.

Published: November 2020

Loss of idiopathic retinal ganglion cells (RGCs) leads to irreversible vision defects and is considered the primary characteristic of glaucoma. However, effective treatment strategies in terms of RGC neuroprotection remain elusive. In the present study, the protective effects of resveratrol on RGC apoptosis, and the mechanisms underlying its effects were investigated, with a particular emphasis on the function of optic atrophy 1 (Opa1). In an ischemia/reperfusion (I/R) injury model, the notable thinning of the retina, significant apoptosis of RGCs, reduction in Opa1 expression and long Opa1 isoform to short Opa1 isoform ratios (L‑Opa1/S‑Opa1 ratio) were observed, all of which were reversed by resveratrol administration. Serum deprivation resulted in reductions in R28 cell viability, superoxide dismutase (SOD) activity, Opa1 expression and induced apoptosis, which were also partially reversed by resveratrol treatment. To conclude, results from the present study suggest that resveratrol treatment significantly reduced retinal damage and RGC apoptosis in I/R injury and serum deprivation models. In addition, resveratrol reversed the downregulated expression of Opa1 and reduced SOD activity. Mechanistically, resveratrol influenced mitochondrial dynamics by regulating the L‑Opa1/S‑Opa1 ratio. Therefore, these observations suggest that resveratrol may exhibit potential as a therapeutic agent for RGC damage in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521588PMC
http://dx.doi.org/10.3892/ijmm.2020.4711DOI Listing

Publication Analysis

Top Keywords

opa1 expression
12
resveratrol
8
retinal ganglion
8
ganglion cells
8
rgc apoptosis
8
i/r injury
8
opa1 isoform
8
l‑opa1/s‑opa1 ratio
8
reversed resveratrol
8
serum deprivation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!