The release of late spermatids from the seminiferous epithelium requires the internalization of intercellular junctions by Sertoli cell specific structures called "tubulobulbar complexes" (TBCs). These large, endocytic devices likely evolved from classic clathrin-mediated-endocytosis (CME) machinery, but have several important morphological differences to CME vesicles. Most notable among these differences is that extensive endoplasmic reticulum (ER) membrane contact sites (MCSs) occur with TBCs and not with clathrin-coated pits. One of the well-established functions of ER MCSs is lipid exchange. Previously, we have established that the ORP9 lipid exchange protein is localized to the TBC-ER MCS; however, the function of ORP9 and lipid exchange at the sites is not known. Here we use an in vivo knockdown approach to probe function. The testes of Sprague-Dawley rats were injected with ORP9 targeted siRNA or non-targeted reagents, and the tissues examined by bright field, super-resolution stimulated emission depletion, and electron microscopy. The knockdown of ORP9 was achieved and maintained with daily injections of siRNA for 2-3 day intervals. Compared to controls, sections from ORP9 siRNA-injected testes had longer TBC tubes and fewer fused TBC bulbs. Late spermatids were also abnormally retained in the epithelium of knockdown tissue. These results suggest that ORP9 is necessary for normal TBC bulb vesiculation and fusion, most likely by changing the plasma membrane lipid profile of the TBC. These data also further support the conclusion that TBCs are part of the normal mechanism of sperm release.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/biolre/ioaa159 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, People's Republic of China.
Monitoring subcellular organelle dynamics in real time and precisely assessing membrane heterogeneity in living cells are very important for studying fundamental biological mechanisms and gaining a comprehensive understanding of cellular processes. However, there remains a shortage of effective tools for these purposes. Herein, we propose a strategy to develop the exchangeable water-sensing probeAPBD for time-lapse imaging of dynamics in cellular membrane-bound organelle morphology with structured illumination microscopy at the nanoscale.
View Article and Find Full Text PDFJ Vet Sci
December 2024
Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
Importance: The brain and adipose tissue interact metabolically, and if there is a problem with the energy metabolism of the brain, it cannot maintain the energy balance with the adipose tissue. Therefore, when adenylate kinase 5 (), which regulates energy metabolism in the brain, is knocked out, problems with lipid metabolism may occur.
Objective: We aimed to elucidate the metabolic function and phenotype of , a gene with an unknown function in metabolism.
Subcell Biochem
December 2024
IDIBE, Universidad Miguel Hernández, Elche, Alicante, Spain.
Nuclear magnetic resonance (NMR) is a spectroscopic technique based on the absorption of radiofrequency radiation by atomic nuclei in the presence of an external magnetic field. NMR has followed a "bottom-up" approach to solve the structures of isolated domains of viral proteins, including capsid protein subunits, or to provide information about other macromolecular partners with which such proteins interact. NMR has been instrumental in describing conformational changes in viral proteins and nucleic acids, showing the presence of dynamic equilibria which are thought to be important at different stages of the virus life cycle.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, USA. Electronic address:
Endocytosis is a prominent mechanism for SARS-CoV-2 entry into host cells. Upon internalization into early endosomes (EEs), the virus is transported to late endosomes (LEs), where acidic conditions facilitate spike protein processing and viral genome release. Dynein and kinesin motors drive EE transport along microtubules; dynein moves EEs to the perinuclear region, while kinesins direct them towards the plasma membrane, creating a tug-of-war over the direction of transport.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
Department of Medical Engineering, Upper Austria University of Applied Sciences, 4020 Linz, Austria.
The viscoelastic properties of biological membranes are crucial in controlling cellular functions and are determined primarily by the lipids' composition and structure. This work studies these properties by varying the structure of the constituting lipids in order to influence their interaction with high-density lipoprotein (HDL) particles. Various fluorescence-based techniques were applied to study lipid domains, membrane order, and the overall lateral as well as the molecule-internal glycerol region mobility in HDL-membrane interactions (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!