H1N1 virus-induced excessive inflammatory response contributes to severe disease and high mortality rates. There is currently no effective strategy against virus infection in lung. The present study evaluated the protective roles of a natural compound, lapiferin, in H1N1 virus-induced pulmonary inflammation in mice and in cultured human bronchial epithelial cells. Initially, Balb/C mice were grouped as Control, H1N1 infection (intranasally infected with 500 plaque-forming units of H1N1 virus), lapiferin (10 mg/kg), and H1N1+lapiferin (n=10/group). Lung histology, expression of inflammatory factors, and survival rates were assessed after 14 days of exposure. Administration of lapiferin significantly alleviated the virus-induced inflammatory infiltrate in lung tissues. Major pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α, were decreased at both mRNA and protein levels by lapiferin administration in the lung homogenate. Lapiferin also reduced inflammatory cell numbers in bronchoalveolar fluid. Mechanistically, lapiferin suppressed the transcriptional activity and protein expression of NF-κB p65, causing inhibition on NF-κB signaling. Pre-incubation of human bronchial epithelial cells with an NF-κB signaling specific activator, ceruletide, significantly blunted lapiferin-mediated inhibition of pro-inflammatory cytokines secretion in an air-liquid-interface cell culture experiment. Activation of NF-κB signaling also blunted lapiferin-ameliorated inflammatory infiltrate in lungs. These results suggested that lapiferin was a potent natural compound that served as a therapeutic agent for virus infection in the lung.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7485324 | PMC |
http://dx.doi.org/10.1590/1414-431X20209183 | DOI Listing |
BMC Infect Dis
January 2025
State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
Influenza-related acute lung injury is a life-threatening condition primarily caused by uncontrolled replication of the influenza virus and intense proinflammatory responses. Cereblon (CRBN) is a protein known for its role in the ubiquitin-proteasome system and as a target of the drug thalidomide. However, the function of CRBN in influenza virus infection remains poorly understood.
View Article and Find Full Text PDFJ Ethnopharmacol
December 2024
The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Chinese Medicine Guangdong Laboratory, Guangdong, Hengqin, 519031, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China. Electronic address:
Ethnopharmacological Relevance: Severe influenza, marked by excessive cytokine production, is a major contributor to death in hospitalized individuals. Fuzheng Jiedu decoction (FZJDD), an effective traditional Chinese herbal recipe, has demonstrated promising results in combating the COVID-19 pandemic by reducing mortality and improving Symptoms, and has exhibited anti-inflammatory properties in both clinical trials and laboratory research. Given that pneumonia is a common outcome of SARS-CoV-2 and H1N1 virus infections, we hypothesized that FZJDD may also have therapeutic effects on influenza-related pneumonia and acute lung injury (ALI).
View Article and Find Full Text PDFAntiviral Res
December 2024
Division of Infectious Diseases, Department of Medicine, University of Illinois Chicago, Illinois, USA.
Influenza A viruses (IAVs) and endemic coronaviruses (eCoVs) are common etiologic agents for seasonal respiratory infections. The human H1N1 of IAV and coronavirus OC43 (HCoV-OC43) can result in hospitalization, acute respiratory distress syndrome (ARDS), and even death, particularly in immunocompromised individuals. They infect the epithelium of the respiratory tract by interacting with host cell sialic acid (Sia)- linked receptors whose synthesis is catalyzed by sialyltransferases (STs).
View Article and Find Full Text PDFPhytomedicine
December 2024
Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, PR China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515, PR China. Electronic address:
Background: Acute lung injury (ALI) is the main cause of death in clinical respiratory virus infection. Liang-Ge-San (LGS), a famous traditional Chinese formula, has been proved to be effective in treating ALI caused by lipopolysaccharide. However, the effects of LGS on ALI induced by viral infections remain uncertain.
View Article and Find Full Text PDFJ Bioenerg Biomembr
December 2024
Department of ICU, Danyang Hospital of Traditional Chinese Medicine, No. 38, Yunyang Road, Danyang, 212300, China.
Influenza A (H1N1) virus is an acute respiratory infection responsible for enormous morbidity and mortality worldwide. The tripartite motif-containing protein 46 (TRIM46) has an antiviral function that inhibits various viral infections. This study is designed to explore the role and mechanism of TRIM46 in the progress of H1N1 infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!