Probing the active sites for methane activation on Ga/ZSM-5 zeolites with solid-state NMR spectroscopy.

Chem Commun (Camb)

National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.

Published: October 2020

Ga-modified zeolites represent the most effective catalyst for catalytic transformation of light alkanes to aromatics. GaO ions and GaO clusters on Ga/ZSM-5 zeolites are probed by solid-state NMR. These two types of Ga species show strong Lewis acidity and are quantitatively correlated with the catalytic activity of Ga/ZSM-5 for methane C-H bond activation. The interaction between the surface Ga species and zeolite is characterized by using double-resonance solid-state NMR spectroscopy, which provides direct spectroscopic evidence for the location and distribution of active Ga species. These results provide new insight into the understanding of the nature and role of Ga species in Ga-modified zeolites for the conversion of light alkanes.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cc04298fDOI Listing

Publication Analysis

Top Keywords

solid-state nmr
12
ga/zsm-5 zeolites
8
nmr spectroscopy
8
ga-modified zeolites
8
light alkanes
8
probing active
4
active sites
4
sites methane
4
methane activation
4
activation ga/zsm-5
4

Similar Publications

Observation of H-H J-couplings in fast magic-angle-spinning solid-state NMR spectroscopy.

Nat Commun

December 2024

Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.

While H-H J-couplings are the cornerstone of all spectral assignment methods in solution-state NMR, they are yet to be observed in solids. Here we observe H-H J-couplings in plastic crystals of (1S)-(-)-camphor in solid-state NMR at magic angle spinning (MAS) rates of 100 kHz and above. This is enabled in this special case because the intrinsic coherence lifetimes at fast MAS rates become longer than the inverse of the H-H J couplings.

View Article and Find Full Text PDF

Neurodegeneration in Huntington's disease (HD) is accompanied by the aggregation of fragments of the mutant huntingtin protein, a biomarker of disease progression. A particular pathogenic role has been attributed to the aggregation-prone huntingtin exon 1 (HTTex1), generated by aberrant splicing or proteolysis, and containing the expanded polyglutamine (polyQ) segment. Unlike amyloid fibrils from Parkinson's and Alzheimer's diseases, the atomic-level structure of HTTex1 fibrils has remained unknown, limiting diagnostic and treatment efforts.

View Article and Find Full Text PDF

Amphiphilic copolymers of comb-like poly(poly(ethylene glycol) methacrylate) (PPEGMA) with methyl methacrylate (MMA) synthesized by one-pot atom transfer radical polymerization were mixed with lithium bis (trifluoromethanesulfonyl) imide salt to formulate dry solid polymer electrolytes (DSPE) for semisolid-state Li-ion battery applications. The PEO-type side chain length (EO monomer's number) in the PEGMA macromonomer units was varied, and its influence on the mechanical and electrochemical characteristics was investigated. It was found that the copolymers, due to the presence of PMMA segments, possess viscoelastic behavior and less change in mechanical properties than a PEO homopolymer with 100 kDa molecular weight in the investigated temperature range.

View Article and Find Full Text PDF

The present study reports the ability of a fungal isolate DY1, obtained from rotten wood, to degrade alkali lignin (AL) and lignocelluloses in an efficient manner. The efficiency of degradation was monitored by measuring the percentage of decolorization and utilizing GC-MS for identifying degradation products at different time intervals (10, 20, 30, and 40 days). The optimal degradation of alkali lignin (AL) was achieved at 0.

View Article and Find Full Text PDF

Polar Networks Mediate Ion Conduction of the SARS-CoV-2 Envelope Protein.

J Am Chem Soc

December 2024

Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States.

The SARS-CoV-2 E protein conducts cations across the cell membrane to cause pathogenicity to infected cells. The high-resolution structures of the E transmembrane domain (ETM) in the closed state at neutral pH and in the open state at acidic pH have been determined. However, the ion conduction mechanism remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!