Nickel is a ubiquitous environmental pollutant, which has various effects on reproductive endocrinology. In this study, human adrenocortical carcinoma (NCI-H295R) cell line was used as an in vitro biological model to study the effect of nickel chloride (NiCl2) on the viability and steroidogenesis. The cells were exposed to different concentrations (3.90; 7.80; 15.60; 31.20; 62.50; 125; 250 and 500 microM) of NiCl2 and compared with control group (culture medium without NiCl2). The cell viability was measured by the metabolic activity assay. Production of sexual steroid hormones was quantified by enzyme linked immunosorbent assay. Following 48 h culture of the cells in the presence of NiCl2 a dose-dependent depletion of progesterone release was observed even at the lower concentrations. In fact, lower levels of progesterone were detected in groups with higher doses (>/=125 microM) of NiCl2 (P<0.01), which also elicited cytotoxic action. A more prominent decrease in testosterone production (P<0.01) was also noted in comparison to that of progesterone. On the other hand, the release of 17beta-estradiol was substantially increased at low concentrations (3.90 to 62.50 microM) of NiCl2. The cell viability remained relatively unaltered up to 125 microM (P>0.05) and slightly decreased from 250 microM of NiCl2 (P<0.05). Our results indicate endocrine disruptive effect of NiCl2 on the release of progesterone and testosterone in the NCI-H295R cell line. Although no detrimental effect of NiCl2 (

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8549914PMC
http://dx.doi.org/10.33549/physiolres.934452DOI Listing

Publication Analysis

Top Keywords

viability steroidogenesis
8
human adrenocortical
8
adrenocortical carcinoma
8
carcinoma nci-h295r
8
nci-h295r cell
8
microm nicl2
8
nicl2
5
vitro assessment
4
assessment impact
4
impact nickel
4

Similar Publications

Scabiosa artropurperea, a member of the Dipsacaceae family and Scabiosa genus, is renowned for its medicinal properties. In the present study, we investigated the impact of Scabiosa artropurperea aqueous extract (AES) on the in vivo reproductive functions in Queue Fine de l'Ouest ewes, and on in vitro ovine granulosa cells. Ewes were synchronized for 14 days with intra-vagina progesterone (P4) devices (FGA, 20 mg) and divided into four groups receiving daily oral doses of 0, 1, 2, and 4 mg of AES/kg Live Body Weight (LBW), respectively.

View Article and Find Full Text PDF

The present study was conducted to evaluate the impact of α-Cypermethrin (αCYP), the second most commonly used pesticide in India, on the ovine ovarian granulosa cells (GCs) viability, growth, apoptosis, and steroidogenesis. GCs collected from abattoir-derived ovine ovaries were cultured for 3/6 days in the presence of various concentrations of αCYP (0, 1, 10, 25, 50, and 100 μM). The results revealed a binary effect on GCs, where metabolic activity and viability rates were significantly (p < 0.

View Article and Find Full Text PDF

Polycyclic Aromatic Hydrocarbons (PAHs) exposure leads to disorders reported in female infertility patients. Our hypothesis is that PAHs accumulate in granulosa cells (Gc) according to body mass index (BMI) and directly affects its functions. All 16 high-priority PAHs were in human FF, Gc and blood plasma with the highest concentration in Gc (GC-MS/MS).

View Article and Find Full Text PDF

MiRNAs are typically reported to play a negative regulatory role in post-transcriptional expression of target genes and are widely involved in a variety of biological processes such as growth, metabolism and reproduction. However, research on the role of miRNAs in the ovulation process of chicken ovaries is still insufficient compared to that in mammals. Here, we investigated the regulatory mechanisms of gga-miR-6634-5p in the growth and steroid hormone secretion of chicken granulosa cells (GCs) by targeting MMP16.

View Article and Find Full Text PDF

Parabens are widely used because of their antimicrobial properties in drugs, cosmetics, and food; however, it has been reported that methylparaben may adversely influence female reproduction. Methylparaben decreases oocyte in vitro maturation at a maturation inhibition concentration 50 of 780.31 μM but also decreases oocyte viability at a lethal concentration 50 of 2028.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!