Obesity-associated microbiota contributes to mucus layer defects in genetically obese mice.

J Biol Chem

Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Physiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden.

Published: November 2020

The intestinal mucus layer is a physical barrier separating the tremendous number of gut bacteria from the host epithelium. Defects in the mucus layer have been linked to metabolic diseases, but previous studies predominantly investigated mucus function during high-caloric/low-fiber dietary interventions, thus making it difficult to separate effects mediated directly through diet quality from potential obesity-dependent effects. As such, we decided to examine mucus function in mouse models with metabolic disease to distinguish these factors. Here we show that, in contrast to their lean littermates, genetically obese (ob/ob) mice have a defective inner colonic mucus layer that is characterized by increased penetrability and a reduced mucus growth rate. Exploiting the coprophagic behavior of mice, we next co-housed ob/ob and lean mice to investigate if the gut microbiota contributed to these phenotypes. Co-housing rescued the defect of the mucus growth rate, whereas mucus penetrability displayed an intermediate phenotype in both mouse groups. Of note, non-obese diabetic mice with high blood glucose levels displayed a healthy colonic mucus barrier, indicating that the mucus defect is obesity- rather than glucose-mediated. Thus, our data suggest that the gut microbiota community of obesity-prone mice may regulate obesity-associated defects in the colonic mucosal barrier, even in the presence of dietary fiber.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7667970PMC
http://dx.doi.org/10.1074/jbc.RA120.015771DOI Listing

Publication Analysis

Top Keywords

mucus layer
16
mucus
11
genetically obese
8
mucus function
8
colonic mucus
8
mucus growth
8
growth rate
8
gut microbiota
8
mice
6
obesity-associated microbiota
4

Similar Publications

Whole-genome sequencing and genomic analysis of four strains newly isolated from human feces.

Front Microbiol

December 2024

West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.

Background: Numerous studies have demonstrated that is closely associated with human health. These bacteria colonize the mucus layer of the gastrointestinal tract and utilize mucin as their sole source of carbon and nitrogen. spp.

View Article and Find Full Text PDF

phage ΦPNJ-9 adheres to mucus via a variant Hoc protein.

J Virol

December 2024

Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.

Phages, as antagonists of bacteria, hold significant promise for combating drug-resistant bacterial infections. Their host specificity allows phages to target pathogenic bacteria without disrupting the gut microbiota, offering distinct advantages in the prevention and control of intestinal pathogens. The interaction between the phage and the gut plays a crucial role in the efficacy of phage-mediated bacterial killing.

View Article and Find Full Text PDF

An Oral HS Responsive CuO Nanozyme Platform with Strong ROS/HS Scavenging Capacity for the Treatment of Colitis.

ACS Appl Mater Interfaces

December 2024

Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.

Inflammatory bowel disease involves excess reactive oxygen species (ROS) and hydrogen sulfide (HS) at inflammatory sites. Nanozyme-mediated ROS and HS scavenging therapy is promising for colitis treatment. Here, we synthesized a multiple ROS scavenging CuO nanoparticle and first explored its HS scavenging capacity.

View Article and Find Full Text PDF

Probiotic supplement for the treatment of polycystic ovarian syndrome.

Pharmacol Ther

December 2024

Institute of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore 54590, Pakistan. Electronic address:

Polycystic Ovarian Syndrome is one of the major prevalent causes of infertility reported worldwide nearly 6-26 %, especially in girls hitting puberty and women at their childbearing age. The main clinical manifestations include irregular menstrual cycle, small cysts on one or both ovaries, chronic oligo-anovulation, and hirsutism. The etiological criteria are very complex and related to many factors like obesity, insulin sensitivity, inflammation, hyperandrogenism, diabetes mellitus type II, cardiovascular diseases, and dysbiosis of gut microbiota.

View Article and Find Full Text PDF

Diverse domains of raspberry pectin: critical determinants for protecting against IBDs.

Food Funct

December 2024

College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China.

Inflammatory bowel diseases (IBDs), including Crohn's disease (CD) and ulcerative colitis (UC), are chronic conditions characterized by periods of intestinal inflammation and have become global diseases. Dietary pectins have shown protective effects on IBD models. However, the development of pectin-based diet intervention for IBD individuals requires knowledge of both the bioactive structural patterns and the mechanisms underlying diet-microbiota-host interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!