A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterization and registration of 3D ultrasound for use in permanent breast seed implant brachytherapy treatment planning. | LitMetric

Characterization and registration of 3D ultrasound for use in permanent breast seed implant brachytherapy treatment planning.

Brachytherapy

Department of Radiation Oncology, BC Cancer - Kelowna, Kelowna, British Columbia, Canada; Department of Surgery, The University of British Columbia, Vancouver, British Columbia, Canada.

Published: August 2021

Purpose: Permanent breast seed implant (PBSI) brachytherapy is a novel technique for early-stage breast cancer. Computed tomography (CT) images are used for treatment planning and freehand 2D ultrasound for implant guidance. The multimodality imaging approach leads to discrepancies in target identification. To address this, a prototype 3D ultrasound (3DUS) system was recently developed for PBSI. In this study, we characterize the 3DUS system performance, establish QA baselines, and develop and test a method to register 3DUS images to CT images for PBSI planning.

Methods And Materials: 3DUS system performance was characterized by testing distance and volume measurement accuracy, and needle template alignment accuracy. 3DUS-CT registration was achieved through point-based registration using a 3D-printed model designed and constructed to provide visible landmarks on both images and tested on an in-house made gel breast phantom.

Results: The 3DUS system mean distance measurement accuracy was within 1% in axial, lateral, and elevational directions. A volumetric error of 3% was observed. The mean needle template alignment error was 1.0° ± 0.3 ° and 1.3 ± 0.5 mm. The mean 3DUS-CT registration error was within 3 mm when imaging at the breast centre or across all breast quadrants.

Conclusions: This study provided baseline data to characterize the performance of a prototype 3DUS system for PBSI planning and developed and tested a method to obtain accurate 3DUS-CT image registration for PBSI planning. Future work will focus on system validation and characterization in a clinical context as well as the assessment of impact on treatment plans.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brachy.2020.07.010DOI Listing

Publication Analysis

Top Keywords

3dus system
20
permanent breast
8
breast seed
8
seed implant
8
treatment planning
8
system performance
8
measurement accuracy
8
needle template
8
template alignment
8
3dus-ct registration
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!