Background: Developmental dysplasia of the hip (DDH) is the most common deformity of the lower extremity in children. The biomechanical change during closed reduction (CR) focused on cartilage contact pressure (CCP) has not been studied. Thereby, we try to provide insight into biomechanical factors potentially responsible for the success of CR treatment sand complications by using finite element analysis (FEA) for the first time.

Methods: Finite element models of one patient with DDH were established based on the data of MRI scan on which cartilage contact pressure was measured. During CR, CCP between the femoral head and acetabulum in different abduction and flexion angles were tested to estimate the efficacy and potential risk factors of avascular necrosis (AVN) following CR.

Results: A 3D reconstruction by the FEA method was performed on a 16 months of age girl with DDH on the right side. The acetabulum of the involved side showed a long, narrow, and "flat-shaped" deformity, whereas the femoral head was smaller and irregular compared with the contralateral side. With increased abduction angle, the stress of the posterior acetabulum increased significantly, and the stress on the lateral part of the femoral head increased as well. The changes of CCP in the superior acetabulum were not apparent during CR. There were no detectable differences in terms of pressure on the femoral head.

Conclusions: Severe dislocation (IHDI grade III and IV) in children showed a high mismatch between the femoral head and acetabulum. Increased abduction angle corresponded with high contact pressure, which might relate to AVN, whereas increased flexion angle was not. Enhanced pressure on the lateral part of the femoral head might increase the risk of AVN.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7487652PMC
http://dx.doi.org/10.1186/s12891-020-03602-wDOI Listing

Publication Analysis

Top Keywords

femoral head
20
contact pressure
16
finite element
12
closed reduction
8
developmental dysplasia
8
dysplasia hip
8
element analysis
8
cartilage contact
8
head acetabulum
8
increased abduction
8

Similar Publications

Network Analysis of Legg-Calve-Perthes Disease and Its Comorbidities.

J Clin Med

January 2025

Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Republic of Korea.

: Legg-Calvé-Perthes disease (LCPD) is characterized by idiopathic avascular necrosis of the femoral head in children. There are several hypotheses regarding the cause of LCPD; however, the exact cause remains unclear. Studies on comorbidities can provide better insight into the disease.

View Article and Find Full Text PDF

Background: Steroid-induced osteonecrosis of the femoral head (SIONFH) is a universal hip articular disease and is very hard to perceive at an early stage. The understanding of the pathogenesis of SIONFH is still limited, and the identification of efficient diagnostic biomarkers is insufficient. This research aims to recognize and validate the latent exosome-related molecular signature in SIONFH diagnosis by employing bioinformatics to investigate exosome-related mechanisms in SIONFH.

View Article and Find Full Text PDF

Hypophosphatasia (HPP) is a congenital bone disease caused by tissue-nonspecific mutations in the alkaline phosphatase gene. It is classified into six types: severe perinatal, benign prenatal, infantile, pediatric, adult, and odonto. HPP with femoral hypoplasia on fetal ultrasonography, seizures, or early loss of primary teeth can be easily diagnosed.

View Article and Find Full Text PDF

Case: We present 3 cases demonstrating radiographic posterior subluxation in lateral functional radiographs taken in the flexed-seated position. Two of the patients were asymptomatic, and 2 showed the posterior translation of the femoral head, which is almost a dislocation, with spontaneous reduction. The subluxation can occur not only in patients after lumbar fusion surgery but also in patients with relatively normal lumbar spine due to excessive hip flexion.

View Article and Find Full Text PDF

Background And Purpose:  Computed tomography radiostereometric analysis (CT-RSA) assesses implant micromovements using low-dose CT scans. We aimed to investigate whether CT-RSA is comparable to marker-based radiostereometric analysis (RSA) measuring early femoral head migration in cemented stems. We hypothesized that CT-RSA is comparable to marker-based RSA in evaluating femoral head subsidence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!