Stable surfactant-free, water-dispersed, micron-sized organic solvent colloids have been a challenging subject of major interest both experimentally and theoretically in recent years. In this article, novel matrix capsules are introduced to carry an organic solvent ( toluene) into water and form a stable solvent dispersion in the aqueous phase without the addition of a surfactant. The structure and dynamics of the dispersion are investigated by confocal Raman microscopy, surface force microscopy, and pulsed field gradient nuclear magnetic resonance (PFG-NMR). The matrix capsules are fabricated according to a literature method using alternating layer-by-layer adsorption of oppositely charged polyelectrolytes onto porous calcium carbonate (CaCO) particles, followed by core removal. The highly rough surface and the inner cavities of CaCO particles result in a heavy matrix capsule, which can achieve a high solvent encapsulation efficiency and form a micron-sized carrier for the solvent in water that is stable for long times ( at least one week.) Two distinct diffusion coefficients are evidenced by PFG-NMR, which may indicate two distinct diffusion environments in the sample. This suggests that the toluene undergoes a partial exchange between environments within the 100 ms time frame of the NMR experiment.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b706103jDOI Listing

Publication Analysis

Top Keywords

structure dynamics
8
organic solvent
8
matrix capsules
8
caco particles
8
distinct diffusion
8
solvent
5
solvent-filled matrix
4
matrix polyelectrolyte
4
polyelectrolyte capsules
4
capsules preparation
4

Similar Publications

Steroids are organic compounds found in all forms of biological life. Besides their structural roles in cell membranes, steroids act as signalling molecules in various physiological processes and are used to treat inflammatory conditions. It has been hypothesised that in addition to their well-characterised genomic and non-genomic pathways, steroids exert their biological or pharmacological activities an indirect, nonreceptor-mediated membrane mechanism caused by steroid-induced changes to the physicochemical properties of cell membranes.

View Article and Find Full Text PDF

Climate Change Drives Changes in the Size and Composition of Fungal Communities Along the Soil-Seedling Continuum of Schima superba.

Mol Ecol

January 2025

ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal University, Shanghai, China.

Plant microbiomes have a major influence on forest structure and functions, as well as tree fitness and evolution. However, a comprehensive understanding of variations in fungi along the soil-plant continuum, particularly within tree seedlings, under global warming is lacking. Here, we investigated the dynamics of fungal communities across different compartments (including bulk soil and rhizosphere soil) and plant organs (including the endosphere of roots, stems and leaves) of Schima superba seedlings exposed to experimental warming and drought using AccuITS absolute quantitative sequencing.

View Article and Find Full Text PDF

This study investigates the structural and dynamic properties of ternary mixtures composed of NaPF, ethylene carbonate (EC), and the ionic liquid choline glycine (ChGly), with a focus on their potential as electrolytes for supercapacitors. The combination of NaPF-EC, known for its high ionic conductivity, with the biodegradable and environmentally friendly ChGly offers a promising approach to enhancing electrolyte performance. Through molecular simulations, we analyze how the inclusion of small concentrations of ChGly affects key properties such as density, cohesive energy, and ion mobility.

View Article and Find Full Text PDF

Spontaneous tumor regression is a recognized phenomenon across various cancer types. Recent research emphasizes the alterations in autoantibodies against carbonic anhydrase I (CA I) (anti-CA I) levels as potential prognostic markers for various malignancies. Particularly, autoantibodies targeting CA I and II appear to induce cellular damage by inhibiting their respective protein's catalytic functions.

View Article and Find Full Text PDF

The zebrafish is a valuable model organism for studying cardiac development and diseases due to its many shared aspects of genetics and anatomy with humans and ease of experimental manipulations. Computational fluid-structure interaction (FSI) simulations are an efficient and highly controllable means to study the function of cardiac valves in development and diseases. Due to their small scales, little is known about the mechanical properties of zebrafish cardiac valves, limiting existing computational studies of zebrafish valves and their interaction with blood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!