To further develop barley breeding and genetics, more information on gene functions based on the analysis of the mutants of each gene is needed. However, the mutant resources are not as well developed as the model plants, such as Arabidopsis and rice. Although genome editing techniques have been able to generate mutants, it is not yet an effective method as it can only be used to transform a limited number of cultivars. Here, we developed a mutant population using 'Mannenboshi', which produces good quality grains with high yields but is susceptible to disease, to establish a Targeting Induced Local Lesions IN Genomes (TILLING) system that can isolate mutants in a high-throughput manner. To evaluate the availability of the prepared 8043 M lines, we investigated the frequency of mutant occurrence using a rapid, visually detectable waxy phenotype as an indicator. Four mutants were isolated and single nucleotide polymorphisms (SNPs) were identified in the gene as novel alleles. It was confirmed that the mutations could be easily detected using the mismatch endonuclease CELI, revealing that a sufficient number of mutants could be rapidly isolated from our TILLING population.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7569886 | PMC |
http://dx.doi.org/10.3390/plants9091153 | DOI Listing |
PLoS Biol
January 2025
Microbial Molecular Evolution Group, Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany.
Bacteriophages infect gram-negative bacteria by attaching to molecules present on the bacterial surface, often lipopolysaccharides (LPS). Modification of LPS can lead to resistance to phage infection. In addition, LPS modifications can impact antibiotic susceptibility, allowing for phage-antibiotic synergism.
View Article and Find Full Text PDFProtein Sci
February 2025
Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland, USA.
Neurofibromin (NF1), a Ras GTPase-activating protein (GAP), catalyzes Ras-mediated GTP hydrolysis and thereby negatively regulates the Ras/MAPK pathway. NF1 mutations can cause neurofibromatosis type 1 manifesting tumors, and neurodevelopmental disorders. Exactly how the missense mutations in the GAP-related domain of NF1 (NF1) allosterically impact NF1 GAP to promote these distinct pathologies is unclear.
View Article and Find Full Text PDFBMC Biol
January 2025
Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
Background: Uveal melanoma (UM) is the most common intraocular tumor in adults, arises either de novo from normal choroidal melanocytes (NCMs) or from pre-existing nevi that stem from NCMs and are thought to harbor UM-initiating mutations, most commonly in GNAQ or GNA11. However, there are no commercially available NCM cell lines, nor is there a detailed protocol for developing an oncogene-mutated CM line (MutCM) to study UM development. This study aimed to establish and characterize premalignant CM models from human donor eyes to recapitulate the cell populations at the origin of UM.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Gastroenterology, The National Key Clinical Specialty, Clinical Research Center for Gut Microbiota and Digestive Diseases of Fujian Province, Key Laboratory for Intestinal Microbiome and Human Health of Xiamen, Zhongshan Hospital of Xiamen University, Xiamen, 361004, China.
Crohn's disease (CD) is a chronic inflammatory autoimmune disease of unknown etiology. To identify new targets related to the initiation of CD, we screened a pair of twins with CD, which is a rare phenomenon in the Chinese population, for genetic susceptibility factors. Whole-exome sequencing (WES) of these patients revealed a mutation in their SERPINB4 gene.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2025
Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, UT, USA.
Ozone (O) is a ubiquitous pollutant known to produce acute, transient inflammation through oxidative injury and inflammation. These effects are exacerbated in susceptible populations, such as the elderly and those exhibiting genetic mutations in central nodes of pulmonary function. To comprehend the impact of these predisposing factors, the present study examines structural, mechanical, and immunological responses to single acute O exposure (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!