The intrinsic stress behavior and microstructure evolution of Molybdenum thin films were investigated to evaluate their applicability as a metallization in high temperature microelectronic devices. For this purpose, 100 nm thick Mo films were sputter-deposited without or with an AlN or SiO cover layer on thermally oxidized Si substrates. The samples were subjected to thermal cycling up to 900 °C in ultrahigh vacuum; meanwhile, the in-situ stress behavior was monitored by a laser based Multi-beam Optical Sensor (MOS) system. After preannealing at 900 °C for 24 h, the uncovered films showed a high residual stress at room temperature and a plastic behavior at high temperatures, while the covered Mo films showed an almost entirely elastic deformation during the thermal cycling between room temperature and 900 °C with hardly any plastic deformation, and a constant stress value during isothermal annealing without a notable creep. Furthermore, after thermal cycling, the Mo films without as well as with a cover layer showed low electrical resistivity (≤10 μΩ·cm).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7559374PMC
http://dx.doi.org/10.3390/ma13183926DOI Listing

Publication Analysis

Top Keywords

thermal cycling
12
900 °c
12
microstructure evolution
8
thin films
8
stress behavior
8
cover layer
8
room temperature
8
films
6
stress
5
stress microstructure
4

Similar Publications

Thermal modification is an environmentally friendly process that does not utilize chemical agents to enhance the stability and durability of wood. The use of thermally modified wood results in a significantly extended lifespan compared with untreated wood, with minimal maintenance requirements, thereby reducing the carbon footprint. This study examines the impact of varying modification temperatures (160, 180, and 210 °C) on the lignin of spruce wood using the ThermoWood process and following the accelerated aging of thermally modified wood.

View Article and Find Full Text PDF

Rapid heating cycle molding technology has recently emerged as a novel injection molding technique, with the uniformity of temperature distribution on the mold cavity surface being a critical factor influencing product quality. A numerical simulation method is employed to investigate the rapid heating process of molds and optimize heating power, with the positions of heating rods as variables. The temperature uniformity coefficient is an indicator used to assess the uniformity of temperature distribution within a system or process, while the thermal response rate plays a crucial role in evaluating the heating efficiency of a heating system.

View Article and Find Full Text PDF

Cellulose-Based Materials and Their Application in Lithium-Sulfur Batteries.

Polymers (Basel)

January 2025

Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina.

Lithium-sulfur (Li-S) batteries are promising candidates for next-generation energy storage due to their high energy density, cost-effectiveness, and environmental friendliness. However, their commercialization is hindered by challenges, such as the polysulfide shuttle effect, lithium dendrite growth, and low electrical conductivity of sulfur cathodes. Cellulose, a natural, renewable, and versatile biopolymer, has emerged as a multifunctional material to address these issues.

View Article and Find Full Text PDF

Large Improvements in the Thermoelectric Properties of SnSe by Fast Cooling.

Materials (Basel)

January 2025

Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

As reported during the last five years, SnSe is one of the leading thermoelectric (TE) materials with a very low lattice thermal conductivity. However, its elements are not as heavy as those of classical thermoelectric materials like PbTe or BiTe. Its outstanding TE properties were revealed after repeated purification steps to minimize the amount of oxygen contamination, followed by spark plasma sintering.

View Article and Find Full Text PDF

In response to the intensifying competition in the mold market and the increasingly stringent specifications of die forgings, the existing 55NiCrMoV7 (MES 1 steel) material can no longer meet the elevated demands of customers. Consequently, this study systematically optimizes the alloy composition of MES 1 steel by precisely adjusting the molybdenum (Mo) and vanadium (V) contents. The primary objective is to significantly enhance the microstructure and thermal-mechanical fatigue performance of the steel, thereby developing a high-performance, long-life hot working die steel designated as MES 2 steel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!