Fibers of poly(4-hydroxybutyrate) (P4HB) have been submitted to both hydrolytic and enzymatic degradation media in order to generate samples with different types and degrees of chain breakage. Random chain hydrolysis is clearly enhanced by varying temperatures from 37 to 55 °C and is slightly dependent on the pH of the medium. Enzymatic attack is a surface erosion process with significant solubilization as a consequence of a preferent stepwise degradation. Small angle X-ray diffraction studies revealed a peculiar supramolecular structure with two different types of lamellar stacks. These were caused by the distinct shear stresses that the core and the shell of the fiber suffered during the severe annealing process. External lamellae were characterized by surfaces tilted 45° with respect to the stretching direction and a higher thickness, while the inner lamellae were more imperfect and had their surfaces perpendicularly oriented to the fiber axis. In all cases, WAXD data indicated that the chain molecular axis was aligned with the fiber axis and molecules were arranged according to a single orthorhombic structure. A gradual change of the microstructure was observed as a function of the progress of hydrolysis while changes were not evident under an enzymatic attack. Hydrolysis mainly affected the inner lamellar stacks as revealed by the direct SAXS patterns and the analysis of correlation functions. Both lamellar crystalline and amorphous thicknesses slightly increased as well as the electronic contrast between amorphous and crystalline regions. Thermal treatments of samples exposed to the hydrolytic media revealed microstructural changes caused by degradation, with the inner lamellae being those that melted faster.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7564121 | PMC |
http://dx.doi.org/10.3390/polym12092024 | DOI Listing |
Polymers (Basel)
January 2025
School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
Poly(lactic acid) (PLA) exhibits excellent shape memory properties but suffers from brittleness and a high glass transition temperature (T), limiting its utility in flexible and durable applications. This study explored the modification of PLA properties through the incorporation of poly(ethylene glycol) (PEG), varying in both content (5-20 wt%) and molecular weight (4000-12,000 g/mol), to enhance its suitability for specific applications, such as medical splints. The PLA/PEG blend, containing 15 wt% PEG and with a molecular weight of 12,000 g/mol, exhibited superior shape fixity (99.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
College of Road and Bridge, Zhejiang Institute of Communications, Hanghzou 311112, China.
Polyurethane (PU) grouting materials are widely used in underground engineering rehabilitation, particularly in reinforcement and waterproofing engineering in deep-water environments. The long-term effect of complex underground environments can lead to nanochannel formation within PU, weakening its repair remediation effect. However, the permeation behavior and microscopic mechanisms of water molecules within PU nanochannels remain unclear.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
State Key Laboratory of Explosion Science and Protection Technology, Beijing Institute of Technology, Beijing 100081, China.
Hydrogen embrittlement is a critical issue for zirconium alloys, which receives long-term attention in their applications. The formation of brittle hydrides facilitates crack initiation and propagation, thereby significantly reducing the material's ductility. This study investigates the tensile properties and hydride morphology of a novel zirconium alloy under different hydrogen-charging current densities ranging from 0 to 300 mA/cm, aiming to clarify the influence of hydrides on the fracture behavior of the alloy.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Aerospace Engineering, Xi'an Jiaotong University, West Xianning Road 28, Xi'an 710049, China.
The aim of this paper is to investigate the effect of TiC addition on the microstructure, microhardness, and wear resistance of the medium-entropy alloy Co37Cr28Ni31Al2Ti2, which is suitable for applications in aerospace, automotive, and energy industries due to its high strength and wear resistance. The samples containing 0, 10, 20, and 40 wt.% of TiC were synthesized.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
To reveal the microstructural evolution and stress-strain distribution of 780 MPa-grade ferrite/martensite dual-phase steel during a uniaxial tensile deformation process, the plastic deformation behavior under uniaxial tension was studied using in situ EBSD and crystal plastic finite element method (CPFEM). The results showed that the geometrically necessary dislocations (GND) in ferrite accumulated continuously, which is conducive to the formation of grain boundaries, but the texture distribution did not change significantly. The average misorientation angle decreased and the proportion of low-angle grain boundaries increased with the increase of strain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!