Optimization and Communication in UAV Networks.

Sensors (Basel)

Inria, 40 Avenue Halley, 59650 Villeneuve d'Ascq, France.

Published: September 2020

Nowadays, Unmanned Aerial Vehicles (UAVs) have received growing popularity in the Internet-of-Things (IoT) which often deploys many sensors in a relatively wide region. Current trends focus on deployment of a single UAV or a swarm of it to generally map an area, perform surveillance, monitoring or rescue operations, collect data from ground sensors or various communicating devices, provide additional computing services close to data producers, etc. Applications are very diverse and call for different features or requirements. But UAV remain low-power battery powered devices that in addition to their mission, must fly and communicate. Thanks to wireless communications, they participate to mobile dynamic networks composed of UAV and ground sensors and thus many challenges have to be addressed to make UAV very efficient. And behind any UAV application, hides an optimization problem. There is still a criterion or multiple ones to optimize such as flying time, energy consumption, number of UAV, quantity of data to send/receive, etc.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7571105PMC
http://dx.doi.org/10.3390/s20185036DOI Listing

Publication Analysis

Top Keywords

ground sensors
8
uav
7
optimization communication
4
communication uav
4
uav networks
4
networks nowadays
4
nowadays unmanned
4
unmanned aerial
4
aerial vehicles
4
vehicles uavs
4

Similar Publications

Context: The two-dimensional graphene/MoTe heterostructure holds extensive potential applications in optoelectronic devices, sensors, and catalysts. To expand its optical applications, this study systematically investigates the adsorption stability of metal atoms (Au, Pt, Pd, and Fe) on the graphene/MoTe and their influence on its optoelectronic properties employing first-principles methods. The findings indicate that after the adsorption of Au and Pd, the structure retains its direct bandgap properties, while the adsorption of Pt and Fe exhibits indirect bandgap characteristics.

View Article and Find Full Text PDF

MEVDT: Multi-modal event-based vehicle detection and tracking dataset.

Data Brief

February 2025

Department of Electrical and Computer Engineering, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, 48128 MI, USA.

In this data article, we introduce the Multi-Modal Event-based Vehicle Detection and Tracking (MEVDT) dataset. This dataset provides a synchronized stream of event data and grayscale images of traffic scenes, captured using the Dynamic and Active-Pixel Vision Sensor (DAVIS) 240c hybrid event-based camera. MEVDT comprises 63 multi-modal sequences with approximately 13k images, 5M events, 10k object labels, and 85 unique object tracking trajectories.

View Article and Find Full Text PDF

As the Internet of Things (IoT) expands globally, the challenge of signal transmission in remote regions without traditional communication infrastructure becomes prominent. An effective solution involves integrating aerial, terrestrial, and space components to form a Space-Air-Ground Integrated Network (SAGIN). This paper discusses an uplink signal scenario in which various types of data collection sensors as IoT devices use Unmanned Aerial Vehicles (UAVs) as relays to forward signals to low-Earth-orbit satellites.

View Article and Find Full Text PDF

Satellite-ground communication is a critical component in the global communication system, significantly contributing to environmental monitoring, radio and television broadcasting, aerospace operations, and other domains. However, the technology encounters challenges in data transmission efficiency, due to the drastic alterations in the communication channel caused by the rapid movement of satellites. In comparison to traditional transmission methods, semantic communication (SemCom) technology enhances transmission efficiency by comprehending and leveraging the intrinsic meaning of information, making it ideal for image transmission in satellite communications.

View Article and Find Full Text PDF

Automatic Cleaning of Time Series Data in Rural Internet of Things Ecosystems That Use Nomadic Gateways.

Sensors (Basel)

January 2025

Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.

A serious limitation to the deployment of IoT solutions in rural areas may be the lack of available telecommunications infrastructure enabling the continuous collection of measurement data. A nomadic computing system, using a UAV carrying an on-board gateway, can handle this; it leads, however, to a number of technical challenges. One is the intermittent collection of data from ground sensors governed by weather conditions for the UAV measurement missions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!