Breast cancer is a leading disease in women. Several studies are focused to evaluate the critical role of extracellular matrix (ECM) in various biochemical and molecular aspects but also in terms of its effect on cancer cell morphology and therefore on cancer cell invasion and metastatic potential. ECM fibrillar components, such as collagen and fibronectin, affect cell behavior and properties of mammary cancer cells. The aim of this study was to investigate using the scanning electron microscopy (SEM) how the highly invasive MDA-MB-231 breast cancer cells, interplaying with ECM substrates during cell migration/invasion, modify their morphological characteristics and cytoplasmic processes in relation to their invasive potential. In particular we reproduced and analyzed how natural structural barriers to cancer cell invasion, such as the basement membrane (Matrigel) and fibrillar components of dermis (fibronectin as well as the different concentrations/array of type I collagen), could induce morphological changes in 3D cultures. Interestingly, we demonstrate that, even with different effects, all collagen concentrations/arrays lead to morphological alterations of breast cancer cells. Intriguingly, the elongated mesenchymal shaped cells were more prominent in 3D cultures with a dense and thick substrate (thick Matrigel, high concentrated collagen network, and densely packed collagen fibers), even though cells with different shape produced and released microvesicles and exosomes as well. It is therefore evident that the peri-tumoral collagen network may act not only as a barrier but also as a dynamic scaffold which stimulates the morphological changes of cancer cells, and modulates tumor development and metastatic potential in breast cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7564980PMC
http://dx.doi.org/10.3390/cells9092031DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
cancer cells
20
cancer cell
12
cancer
10
morphological alterations
8
cell invasion
8
metastatic potential
8
fibrillar components
8
morphological changes
8
collagen network
8

Similar Publications

This study presents T-1-NBAB, a new compound derived from the natural xanthine alkaloid theobromine, aimed at inhibiting VEGFR-2, a crucial protein in angiogenesis. T-1-NBAB's potential to interacts with and inhibit the VEGFR-2 was indicated using in silico techniques like molecular docking, MD simulations, MM-GBSA, PLIP, essential dynamics, and bi-dimensional projection experiments. DFT experiments was utilized also to study the structural and electrostatic properties of T-1-NBAB.

View Article and Find Full Text PDF

The maturation of the RNA cap involving guanosine N-7 methylation, catalyzed by the HsRNMT (RNA guanine-7 methyltransferase)-RAM (RNA guanine-N7 methyltransferase activating subunit) complex, is currently under investigation as a novel strategy to combat PIK3CA mutant breast cancer. However, the development of effective drugs is hindered by a limited understanding of the enzyme's mechanism and a lack of small molecule inhibitors. Following the elucidation of the HsRNMT-RAM molecular mechanism, we report the biophysical characterization of two small molecule hits.

View Article and Find Full Text PDF

Introduction: Outpatient cancer counseling centers (OCCs) are important social work facilities that provide support for cancer survivors who have psychosocial and sociolegal challenges. This paper explores clinical and sociodemographic characteristics, psychosocial burden as well as access routes of clients in OCCs seeking work-related counseling.

Methods: Between May 2022 and December 2023, data were collected in 19 OCCs, using questionnaires and documentation by counselors.

View Article and Find Full Text PDF

New Oral Selective Estrogen Receptor Degraders Redefine Management of Estrogen Receptor-Positive Breast Cancer.

Annu Rev Med

January 2025

Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus and Breast Cancer Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; email:

Oral selective estrogen receptor degraders (SERDs) are pure estrogen receptor antagonists that have the potential to overcome common resistance mechanisms to endocrine therapy in estrogen receptor-positive breast cancer. There are currently five oral SERDs in published and ongoing clinical trials-elacestrant, camizestrant, giredestrant, imlunestrant, and amcenestrant-with more in development. They offer a reasonably well-tolerated oral therapy option with low discontinuation rates in studies.

View Article and Find Full Text PDF

The cysteine-rich epidermal growth factor ligand domain 2 protein (CRELD2) is associated with pathways that regulate epithelial-to-mesenchymal transition, a critical process driving cancer metastasis. This study aimed to determine the prognostic value of CRELD2 status on survival outcomes in triple-negative breast cancer (TNBC). Seventy patients were included in the study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!