Targeting cell cycle regulation in colorectal cancer has not been fully evaluated. We investigated the efficacy of the CDK4/6 inhibitor, abemaciclib, and confirmed a synergistic interaction for PI3K p110α and CDK dual inhibition in colorectal cancer cell lines. Caco-2 and SNU-C4 cell lines were selected to explore the mechanism of action for and resistance to abemaciclib. In vitro and in vivo models were used to validate the anti-tumor activity of abemaciclib monotherapy and BYL719 combination therapy. Abemaciclib monotherapy inhibited cell cycle progression and proliferation in Caco-2 and SNU-C4 cells. CDK2-mediated Rb phosphorylation and AKT phosphorylation appeared to be potential resistance mechanisms to abemaciclib monotherapy. Abemaciclib/BYL719 combination therapy demonstrated synergistic effects regardless of mutation status but showed greater efficacy in the mutated SNU-C4 cell line. Growth inhibition, cell cycle arrest, and migration inhibition were confirmed as mechanisms of action for this combination. In an SNU-C4 mouse xenograft model, abemaciclib/BYL719 combination resulted in tumor growth inhibition and apoptosis with tolerable toxicity. Dual blockade of PI3K p110α and CDK4/6 showed synergistic anti-tumor effects in vivo and in vitro in human colorectal cancer cell lines. This combination could be a promising candidate for the treatment of patients with advanced colorectal cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7564416 | PMC |
http://dx.doi.org/10.3390/cancers12092500 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!