Superhydrophilic coatings have been widely used for the surface modification of membranes or biomedical devices owing to their excellent antifouling properties. However, simplifying the modification processes of such materials remains challenging. In this study, we developed a simple and rapid one-step co-deposition process using an oxidant trigger to fabricate superhydrophilic surfaces based on dopamine chemistry with sulfobetaine methacrylate (SBMA). We studied the effect of different oxidants and SBMA concentrations on surface modification in detail using UV-VIS spectrophotometry, dynamic light scattering, atomic force microscopy, X-ray photoelectron spectroscopy, and surface plasmon resonance. We found that NaIO could trigger the rate of polymerization and the optimum ratio of dopamine to SBMA is 1:25 by weight. This makes the surface superhydrophilic (water contact angle < 10°) and antifouling. The superhydrophilic coating, when introduced to polyester membranes, showed great potential for oil/water separation. Our study provides a complete description of the simple and fast preparation of superhydrophilic coatings for surface modification based on mussel-inspired chemistry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7565826PMC
http://dx.doi.org/10.3390/polym12092008DOI Listing

Publication Analysis

Top Keywords

surface modification
12
superhydrophilic coating
8
superhydrophilic coatings
8
coatings surface
8
superhydrophilic
6
surface
5
coating antibacterial
4
antibacterial oil-repellent
4
oil-repellent properties
4
properties naio-triggered
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!