Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Three pyreno[4,5-d]imidazole derivatives are synthesized and evaluated as fluorescent sensors for bismuth (III) ion. The target compounds are prepared in 55-86% yields from a condensation reaction between pyrene-4,5-dione and aromatic aldehydes. The compound bearing a phenolic group can selectively detect bismuth (III) ion via fluorescence enhancement with a detection limit of 1.20 μm in CH CN-DMSO mixture and 3.40 μm in 10% pH5 aqueous in CH CN-DMSO mixture. The sensing mechanism involving a formation of coordination complex is investigated by UV-VIS and fluorescence titrations, H-NMR and the decomplexation of the bismuth complex by sulfide ion. The application of this sensor for quantitative analysis of spiked bismuth (III) ion in real water samples from two different sources is demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/php.13331 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!