Cystic fibrosis (CF) is a genetic disorder produced by the loss of function of CFTR, a main chloride channel involved in transepithelial salt and water transport. CFTR function can be rescued by small molecules called "potentiators" which increase gating activity of CFTR on epithelial surfaces. High throughput screening (HTS) assays allowed the identification of new chemical entities endowed with potentiator properties, further improved through medicinal chemistry optimization. In this review, the most relevant classes of CFTR potentiators developed in the last decade were explored, focusing on structure-activity relationships (SAR) of the different chemical entities, as a useful tool for the improvement of their pharmacological activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2020.112631 | DOI Listing |
Glycoconj J
January 2025
Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy.
Cystic Fibrosis (CF) is a life-threatening hereditary disease resulting from mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene that encodes a chloride channel essential for ion transport in epithelial cells. Mutations in CFTR, notably the prevalent F508del mutation, impair chloride transport, severely affecting the respiratory system and leading to recurrent infections. Recent therapeutic advancements include CFTR modulators such as ETI, a combination of two correctors (Elexacaftor and Tezacaftor) and a potentiator (Ivacaftor), that can improve CFTR function in patients with the F508del mutation.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Türkiye.
Granulomatous mastitis (GM) is a rare, benign, but chronic and recurrent inflammatory breast disease that significantly impacts physical and psychological well-being. It often presents symptoms such as pain, swelling, and discharge, leading to diagnostic confusion with malignancy. The etiology of GM remains unclear, though autoimmune and multifactorial components are suspected.
View Article and Find Full Text PDFStem Cell Res
January 2025
Programme in Molecular Medicine, Research Institute for SickKids Hospital, Toronto, Canada; Department of Clinical and Experimental Medicine, University of Foggia, Italy. Electronic address:
Cystic Fibrosis (CF) is a life-shortening disease that is caused by mutations in the CFTR gene, a gene that is expressed in multiple organs. There are several primary tissue models of CF disease, including nasal epithelial cultures and rectal organoids, that are effective in reporting the potential efficacy of mutation-targeted therapies called CFTR modulators. However, there is the well-documented variation in tissue dependent, therapeutic response amongst CF patients, even those with the same CF-causing mutation.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy.
Limb-girdle muscular dystrophy type 2E/R4 (LGMD2E/R4) is a rare disease that currently has no cure. It is caused by defects in the gene, mainly missense mutations, which cause the impairment of the sarcoglycan complex, membrane fragility, and progressive muscle degeneration. Here, we studied the fate of some β-sarcoglycan (β-SG) missense mutants, confirming that, like α-SG missense mutants, they are targeted for degradation through the ubiquitin-proteasome system.
View Article and Find Full Text PDFJ Clin Transl Endocrinol
December 2024
Division of Endocrinology Diabetes and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
Cystic fibrosis-related diabetes (CFRD) is the most common non-pulmonary comorbidity in people with cystic fibrosis (CF). Current guidelines recommend insulin therapy as the treatment of choice for people with CFRD. In the past, obesity and overweight were uncommon in individuals with CF.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!