Regulation of photoreceptor phosphodiesterase (PDE6) activity is responsible for the speed, sensitivity, and recovery of the photoresponse during visual signaling in vertebrate photoreceptor cells. It is hypothesized that physiological differences in the light responsiveness of rods and cones may result in part from differences in the structure and regulation of the distinct isoforms of rod and cone PDE6. Although rod and cone PDE6 catalytic subunits share a similar domain organization consisting of tandem GAF domains (GAFa and GAFb) and a catalytic domain, cone PDE6 is a homodimer whereas rod PDE6 consists of two homologous catalytic subunits. Here we provide the x-ray crystal structure of cone GAFab regulatory domain solved at 3.3 Å resolution, in conjunction with chemical cross-linking and mass spectrometric analysis of conformational changes to GAFab induced upon binding of cGMP and the PDE6 inhibitory γ-subunit (Pγ). Ligand-induced changes in cross-linked residues implicate multiple conformational changes in the GAFa and GAFb domains in forming an allosteric communication network. Molecular dynamics simulations of cone GAFab revealed differences in conformational dynamics of the two subunits forming the homodimer and allosteric perturbations on cGMP binding. Cross-linking of Pγ to GAFab in conjunction with solution NMR spectroscopy of isotopically labeled Pγ identified the central polycationic region of Pγ interacting with the GAFb domain. These results provide a mechanistic basis for developing allosteric activators of PDE6 with therapeutic implications for halting the progression of several retinal degenerative diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7572642 | PMC |
http://dx.doi.org/10.1016/j.jmb.2020.08.026 | DOI Listing |
Cancer Metab
February 2024
Molecular Oncology Laboratories, Department of Medical Oncology, John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.
Background: PDE6H encodes PDE6γ', the inhibitory subunit of the cGMP-specific phosphodiesterase 6 in cone photoreceptors. Inhibition of PDE6, which has been widely studied for its role in light transduction, increases cGMP levels. The purpose of this study is to characterise the role of PDE6H in cancer cell growth.
View Article and Find Full Text PDFJ Biol Chem
January 2024
Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA. Electronic address:
The sixth family phosphodiesterases (PDE6) are principal effector enzymes of the phototransduction cascade in rods and cones. Maturation of nascent PDE6 protein into a functional enzyme relies on a coordinated action of ubiquitous chaperone HSP90, its specialized cochaperone aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1), and the regulatory Pγ-subunit of PDE6. Deficits in PDE6 maturation and function underlie severe visual disorders and blindness.
View Article and Find Full Text PDFInt J Mol Sci
July 2023
Department of Cell Biology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
Photoreceptors in the retina are highly specialized neurons with photosensitive molecules in the outer segment that transform light into chemical and electrical signals, and these signals are ultimately relayed to the visual cortex in the brain to form vision. Photoreceptors are composed of rods and cones. Rods are responsible for dim light vision, whereas cones are responsible for bright light, color vision, and visual acuity.
View Article and Find Full Text PDFHum Mol Genet
August 2023
Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, Morgantown, WV 26506, USA.
Phosphodiesterase-6 (PDE6) is the key phototransduction effector enzyme residing in the outer segment (OS) of photoreceptors. Cone PDE6 is a tetrameric protein consisting of two inhibitory subunits (γ') and two catalytic subunits (α'). The catalytic subunit of cone PDE6 contains a C-terminus prenylation motif.
View Article and Find Full Text PDFJ Biol Chem
June 2023
Department of Pharmaceutical and Pharmacological Sciences, West Virginia University, Morgantown, West Virginia, USA; Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA. Electronic address:
Heat shock protein 90 (HSP90) is an abundant molecular chaperone that regulates the stability of a small set of proteins essential in various cellular pathways. Cytosolic HSP90 has two closely related paralogs: HSP90α and HSP90β. Due to the structural and sequence similarities of cytosolic HSP90 paralogs, identifying the unique functions and substrates in the cell remains challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!