Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Low vaccine effectiveness against A(H3N2) influenza in seasons with little antigenic drift has been attributed to substitutions in hemagglutinin (HA) acquired during vaccine virus propagation in eggs. Clinical trials comparing recombinant HA vaccine (rHA) and cell-derived inactivated influenza vaccine (IIV) to egg-derived IIVs provide opportunities to assess how egg-adaptive substitutions influence HA immunogenicity.
Methods: Neutralization titers in pre- and postimmunization sera from 133 adults immunized with 1 of 3 types of influenza vaccines in a randomized, open-label trial during the 2018-2019 influenza season were measured against egg- and cell-derived A/Singapore/INFIMH-16-0019/2016-like and circulating A(H3N2) influenza viruses using HA pseudoviruses.
Results: All vaccines elicited neutralizing antibodies to all H3 vaccine antigens, but the rHA vaccine elicited the highest titers and seroconversion rates against all strains tested. Egg- and cell-derived IIVs elicited responses similar to each other. Preimmunization titers against H3 HA pseudoviruses containing egg-adaptive substitutions T160K and L194P were high, but lower against H3 HA pseudoviruses without those substitutions. All vaccines boosted neutralization titers against HA pseudoviruses with egg-adaptive substitutions, but poorly neutralized wild-type 2019-2020 A/Kansas/14/2017 (H3N2) HA pseudoviruses.
Conclusion: Egg- and cell-derived 2018-2019 season influenza vaccines elicited similar neutralization titers and response rates, indicating that the cell-derived vaccine did not improve immunogenicity against the A(H3N2) viruses. The higher responses after rHA vaccination may be due to its higher HA content. All vaccines boosted titers to HA with egg-adaptive substitutions, suggesting boosting from past antigens or better exposure of HA epitopes. Studies comparing immunogenicity and effectiveness of different influenza vaccines across many seasons are needed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/cid/ciaa1352 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!