Heart failure (HF) remains a major cause of death and disability worldwide. Currently, B-type natriuretic peptide and N-terminal probrain natriuretic peptide are diagnostic biomarkers used in HF. Although very sensitive, they are not specific enough and do not allow the prediction or early diagnosis of HF. Many ongoing studies focus on determining the underlying cause and understanding the mechanisms of HF on the cellular level. MicroRNAs (miRNAs) are noncoding RNAs, which control the majority of cellular processes and therefore are considered to have a potential clinical application in HF. In this review, we aim to provide synthesized information about miRNAs associated with ejection fraction, HF etiology, diagnosis, and prognosis, as well as outline therapeutic application of miRNAs in HF. Further, we discuss methodological challenges associated with the analysis of miRNAs and provide recommendations for defining a study population, collecting blood samples, and selecting detection methods to study miRNAs in a reliable and reproducible way. This review is intended to be an accessible tool for clinicians interested in the field of miRNAs and HF.

Download full-text PDF

Source
http://dx.doi.org/10.1097/CRD.0000000000000352DOI Listing

Publication Analysis

Top Keywords

clinical application
8
natriuretic peptide
8
mirnas
6
circulating microrna
4
microrna heart
4
heart failure-practical
4
failure-practical guidebook
4
guidebook clinical
4
application heart
4
heart failure
4

Similar Publications

Objective: Colorectal Cancer (CRC) has attracted much attention due to its high mortality and morbidity. Cordycepin, also known as 3'-deoxyadenosine (3'-dA), exhibits many biological functions, including antibacterial, anti-inflammatory, antiviral, anti-tumor, and immunomodulatory effects. It has been proven to show anticancer activity in both laboratory research studies and living organisms.

View Article and Find Full Text PDF

Introduction: The cardiotoxicity and subsequent Heart Failure (HF) induced by Doxorubicin (DOX) limit the clinical application of DOX. Valsartan (Val) is an angiotensin II receptor blocker that could attenuate the HF induced by DOX. However, the underlying mechanism of Val in this process is not fully understood.

View Article and Find Full Text PDF

Therapeutic hurdles persist in the fight against lung cancer, although it is a leading cause of cancer-related deaths worldwide. Results are still not up to par, even with the best efforts of conventional medicine, thus new avenues of investigation are required. Examining how immunotherapy, precision medicine, and AI are being used to manage lung cancer, this review shows how these tools can change the game for patients and increase their chances of survival.

View Article and Find Full Text PDF

Aims: This study aimed to develop Imatinib Mesylate (IMT)-loaded Poly Lactic-co-Glycolic Acid (PLGA)-D-α-tocopheryl polyethylene glycol succinate (TPGS)- Polyethylene glycol (PEG) hybrid nanoparticles (CSLHNPs) with optimized physicochemical properties for targeted delivery to glioblastoma multiforme.

Background: Glioblastoma multiforme (GBM) is the most destructive type of brain tumor with several complications. Currently, most treatments for drug delivery for this disease face challenges due to the poor blood-brain barrier (BBB) and lack of site-specific delivery.

View Article and Find Full Text PDF

A planktonic population of bacteria can form a biofilm by adhesion and colonization. Proteins known as "adhesins" can bind to certain environmental structures, such as sugars, which will cause the bacteria to attach to the substrate. Quorum sensing is used to establish the population is dense enough to form a biofilm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!