The complexity of heredity has been appreciated for decades: Many traits are controlled not by a single genetic locus but instead by polymorphisms throughout the genome. The importance of complex traits in biology and medicine has motivated diverse approaches to understanding their detailed genetic bases. Here, we focus on recent systematic studies, many in budding yeast, which have revealed that large numbers of all kinds of molecular variation, from noncoding to synonymous variants, can make significant contributions to phenotype. Variants can affect different traits in opposing directions, and their contributions can be modified by both the environment and the epigenetic state of the cell. The integration of prospective (synthesizing and analyzing variants) and retrospective (examining standing variation) approaches promises to reveal how natural selection shapes quantitative traits. Only by comprehensively understanding nature's genetic tool kit can we predict how phenotypes arise from the complex ensembles of genetic variants in living organisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1146/annurev-genet-021920-102037 | DOI Listing |
Allergy Asthma Proc
January 2025
From the Division of Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, California and.
Since its first description more than a decade ago, our understanding of the clinical impact of hereditary alpha-tryptasemia has continued to evolve. First considered to be a genetic disorder with a subset of patients having a syndromic presentation composed of connective tissue abnormalities, symptoms of autonomic dysfunction, and findings of mast cell activation, we now know that hereditary alpha-tryptasemia is a common genetic trait and modifier of mast cell-mediated reactions. More recent studies have shown some previously held associations with congenital hypermobility and postural orthostatic tachycardia syndrome (POTS) to be lacking, and illuminated previously unappreciated associations with clonal and nonclonal mast cell disorders.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Pathobiology Ministry of Education, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
In the post-large era, various COVID-19 sequelae are getting more and more attention to health problems. Although the mortality rate of the COVID-19 infection is now declining, it is often accompanied by new clinical sequelae with different symptoms such as fatigue after infection, loss of smell. The degree of age, gender, virus infection seems to be weakly correlated with clinical symptoms.
View Article and Find Full Text PDFBiol Direct
December 2024
Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
Background: Integrating multi-layered information can enhance the accuracy of genomic prediction for complex traits. However, the improvement and application of effective strategies for genomic prediction (GP) using multi-omics data remains challenging.
Methods: We generated 11 feature sets for sequencing variants from genomics, transcriptomics, metabolomics, and epigenetics data in beef cattle, then we assessed the contribution of functional variants using genomic restricted maximum likelihood (GREML).
Eur J Med Res
December 2024
Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
Background: Preeclampsia (PE) is a pregnancy-specific, multisystemic disorder that affects 2-8% pregnancies worldwide and is a leading cause of maternal and perinatal mortality. At present, there is no cure for PE apart from delivery the placenta. Therefore, it is important and urgent to possess a suitable animal model to study the pathology and treatment of PE.
View Article and Find Full Text PDFCancer Cell Int
December 2024
Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
Tumor organoids have emerged as powerful tools for in vitro cancer research due to their ability to retain the structural and genetic characteristics of tumors. Nevertheless, the absence of a complete tumor microenvironment (TME) limits the broader application of organoid models in immunological studies. Given the critical role of immune cells in tumor initiation and progression, the co-culture model of organoids and peripheral blood mononuclear cells (PBMCs) may provide an effective platform for simulating the interactions between immune and tumor cells in vitro.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!