Efficiencies of artificial photosynthetic and photocatalytic systems depend on their ability to generate long-lived charge-separated (CS) states in photoinduced electron transfer (PET) reactions. PET, in most cases, is followed by an ultrafast back electron transfer, which severely reduces lifetime and quantum yield of CS states. Generation of a long-lived CS state is an important goal in the study of PET reactions. Herein, we report that this goal is achieved using a hierarchically self-assembled anthracene-methyl viologen donor-acceptor system. Anthracene linked to two β-cyclodextrin molecules (CD-AN-CD) and methyl viologen linked to two adamantane units (AD-MV-AD) form an inclusion complex in water, which further self-assembled into well-defined toroidal nanostructures. The fluorescence of anthracene is highly quenched in the self-assembled system because of PET from anthracene to methyl viologen. Irradiation of the aqueous toroidal solution led to formation of a long-lived CS state. Rational mechanisms for the formation of the toroidal nanostructures and long-lived photoinduced charge separation are presented in the paper.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.0c05410DOI Listing

Publication Analysis

Top Keywords

generation long-lived
8
long-lived photoinduced
8
photoinduced charge
8
charge separation
8
electron transfer
8
pet reactions
8
long-lived state
8
methyl viologen
8
toroidal nanostructures
8
separation supramolecular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!