AI Article Synopsis

  • Acute myocardial infarction (MI) is a significant global health issue, causing major complications despite advancements in treatment, leading to cell metabolism shifts that worsen heart function.
  • The study utilized multimodal chemical imaging techniques, particularly MALDI mass spectrometry, to analyze lipid and protein changes in heart tissue affected by MI in mice, providing detailed spatial data.
  • Results showed distinct alterations in lipid species and the accumulation of specific histone proteins around infarcted areas, demonstrating the effectiveness of this imaging approach for studying the molecular changes in myocardial infarction.

Article Abstract

Acute myocardial infarction (MI) is a cardiovascular disease that remains a major cause of morbidity and mortality worldwide despite advances in its prevention and treatment. During acute myocardial ischemia, the lack of oxygen switches the cell metabolism to anaerobic respiration, with lactate accumulation, ATP depletion, Na and Ca overload, and inhibition of myocardial contractile function, which drastically modifies the lipid, protein, and small metabolite profile in the myocardium. Imaging mass spectrometry (IMS) is a powerful technique to comprehensively elucidate the spatial distribution patterns of lipids, peptides, and proteins in biological tissue sections. In this work, we demonstrate an application of multimodal chemical imaging using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), which provided comprehensive molecular information within the same mouse heart tissue sections with myocardial infarction. MALDI-IMS (at 30 μm per pixel) revealed infarct-associated spatial alterations of several lipid species of sphingolipids, glycerophospholipids, lysophospholipids, and cardiolipins along with the acyl carnitines. Further, we performed multimodal MALDI-IMS (IMS3) where dual polarity lipid imaging was combined with subsequent protein MALDI-IMS analysis (at 30 μm per pixel) within the same tissue sections, which revealed accumulations of core histone proteins H4, H2A, and H2B along with post-translational modification products, acetylated H4 and H2A, on the borders of the infarcted region. This methodology allowed us to interpret the lipid and protein molecular pathology of the very same infarcted region in a mouse model of myocardial infarction. Therefore, the presented data highlight the potential of multimodal MALDI imaging mass spectrometry of the same tissue sections as a powerful approach for simultaneous investigation of spatial infarct-associated lipid and protein changes of myocardial infarction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7587215PMC
http://dx.doi.org/10.1021/jasms.0c00245DOI Listing

Publication Analysis

Top Keywords

myocardial infarction
20
mass spectrometry
16
lipid protein
16
tissue sections
16
imaging mass
12
acute myocardial
12
multimodal maldi
8
maldi imaging
8
protein changes
8
mouse heart
8

Similar Publications

This case report highlights a potential vaccine safety concern associated with the Pseudorabies virus (PRV) live vaccine, which warrants further investigation for comprehensive understanding. Vaccine-induced immune thrombotic thrombocytopenia (VITT), a novel syndrome of adverse events following adenovirus vector COVID-19 vaccines, was observed after vaccination with Zoetis PR-VAC PLUS. This led to a 100% morbidity and high mortality among PRV-free Danish purebred pigs from Danish Genetics Co.

View Article and Find Full Text PDF

Introduction: Large administrative healthcare databases can be used for near real-time sequential safety surveillance of drugs as an alternative approach to traditional reporting-based pharmacovigilance. The study aims to build and empirically test a prospective drug safety monitoring setup and perform a sequential safety monitoring of rofecoxib use and risk of cardiovascular outcomes.

Methods: We used Danish population-based health registers and performed sequential analysis of rofecoxib use and cardiovascular outcomes using case-time-control and cohort study designs from January 2000 to September 2004.

View Article and Find Full Text PDF

Coronary artery disease remains a significant global health issue and is a leading cause of mortality. Dual antiplatelet therapy, including clopidogrel, is essential for preventing stent thrombosis after coronary artery stenting. This study assessed the comparative efficacy and safety of generic versus brand-name clopidogrel in a large Taiwanese cohort.

View Article and Find Full Text PDF

Background: Evolving evidence suggests that patients undergoing treatment with Janus kinase inhibitors (JAKi) may face an increased risk of cardiovascular events, malignancies, and serious infections.

Objectives: We assessed cardiovascular, malignancy, and serious infection risks associated with JAKi use compared to tumor necrosis factor inhibitor (TNFi) use, which served as the active comparator, in patients with rheumatoid arthritis (RA) or ulcerative colitis (UC).

Methods: This study emulated a target trial using South Korea's nationwide claims database (2013-2023).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!