Objective: To investigate the effects of etomidate on electrophysiological properties and nicotinic acetylcholine receptors (nAChRs) of ventral horn neurons in the spinal cord.
Methods: The spinal cord containing lumbosacral enlargement was isolated from 19 neonatal SD rats aged 7-12 days. The spinal cord were sliced and digested with papain (0.18 g/30 mL artificial cerebrospinal fluid) and incubated for 40 min. At the ventral horn, acute mechanical separation of neurons was performed with fire-polished Pasteur pipettes, and perforated patch-clamp recordings combined with pharmacological methods were employed on the adherent healthy neurons. In current-clamp mode, the spontaneous action potential (AP) of the ventral horn neurons in the spinal cord was recorded. The effects of pretreatment with different concentrations of etomidate on AP recorded in the ventral horn neurons were examined. In the voltage-clamp mode, nicotine was applied to induce inward currents in the ventral horn neurons, and the effect of pretreatment with etomidate on the inward currents induced by nicotine were examined with different etomidate concentrations, different holding potentials and different use time.
Results: The isolated ventral horn neurons were in good condition with large diverse somata and intact processes. The isolated spinal ventral horn neurons (=21) had spontaneous action potentials, and were continuously perfused for 2 min with 0.3, 3.0 and 30.0 μmol/L etomidate. Compared with those before administration, the AP amplitude, spike potential amplitude and overshoot were concentration-dependently suppressed ( < 0.01), and spontaneous discharge frequency was obviously reduced ( < 0.01, =12). The APs of the other 9 neurons were completely abolished by etomidate at 3.0 or 30 μmol/L. At the same holding potential (VH=-70 mV), pretreatment with 0.3, 3.0 or 30.0 μmol/L etomidate for 2 min concentration-dependently suppressed the current amplitude induced by 0.4 mmol/L nicotine ( < 0.01, =7). At the holding potentials of - 30, - 50, and - 70 mV, pretreatment with 30.0 μmol/L etomidate for 2 min voltage-dependently suppressed the current amplitude induced by 0.4 mmol/L nicotine ( < 0.01, =6 for each holding potential). During the 6 min of 30.0 μmol/L etomidate pretreatment, the clamped cells were exposed to 0.4 mmol/L nicotine for 4 times at 0, 2, 4, and 6 min (each exposure time was 2 s), and the nicotinic current amplitude decreased gradually as the number of exposures increased. But at the same concentration, two nicotine exposures (one at the beginning and the other at the end of the 6 min pretreatment) resulted in a significantly lower inhibition rate compared with 4 nicotine exposures ( < 0.01, =6).
Conclusions: etomidate reduces the excitability of the spinal ventral neurons in a concentration-dependent manner and suppresses the function of nAChR in a concentration-, voltage-, and use-dependent manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7277324 | PMC |
http://dx.doi.org/10.12122/j.issn.1673-4254.2020.05.10 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115.
Deep brain stimulation is an efficacious treatment for dystonia. While the internal pallidum serves as the primary target, recently, stimulation of the subthalamic nucleus (STN) has been investigated. However, optimal targeting within this structure and its surroundings have not been studied in depth.
View Article and Find Full Text PDFJ Exp Zool B Mol Dev Evol
December 2024
Group for the Study of Developmental Processes (GDeP), School of Biological Sciences, University of Concepción, Concepción, Chile.
Anurans are famous for having evolved a highly simplified skull through bone loss and fusion events. Nevertheless, their skeleton displays a rich morphological diversity associated with adaptations to diverse lifestyles and ecological niches. Here, we report larval skull ossification in the Andean toad Rhinella spinulosa (Bufonidae), and compare it to the phylogenetically distant genetic model organism Xenopus tropicalis (Pipidae).
View Article and Find Full Text PDFNeurochem Res
November 2024
Department of Neurosurgery, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, 07441, South Korea.
Chaperonin containing TCP1 (CCT) is an essential protein that controls proteostasis following spinal cord damage. In particular, CCT2 plays an important role in neuronal death in various neurological disorders; however, few studies have investigated the effects of CCT2 on ischemic damage in the spinal cord. In the present study, we synthesized a cell-permeable Tat-CCT2 fusion protein and observed its effects on HO-induced oxidative damage in NSC34 motoneuron-like cells and in the spinal cord after ischemic injury.
View Article and Find Full Text PDFSci Rep
November 2024
School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, NSW, 2308, Australia.
Spinal projection neurons (PNs) are defined by long axons that travel from their origin in the spinal cord to the brain where they relay sensory information from the body. The existence and function of a substantial axon collateral network, also arising from PNs and remaining within the spinal cord, is less well appreciated. Here we use a retrograde viral transduction strategy to characterise a novel subpopulation of deep dorsal horn spinoparabrachial neurons.
View Article and Find Full Text PDFmedRxiv
October 2024
Department of Neurosurgery, Mass General Brigham, Harvard Medical School, Boston, MA, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!