Objective: To investigate the effects of etomidate on electrophysiological properties and nicotinic acetylcholine receptors (nAChRs) of ventral horn neurons in the spinal cord.

Methods: The spinal cord containing lumbosacral enlargement was isolated from 19 neonatal SD rats aged 7-12 days. The spinal cord were sliced and digested with papain (0.18 g/30 mL artificial cerebrospinal fluid) and incubated for 40 min. At the ventral horn, acute mechanical separation of neurons was performed with fire-polished Pasteur pipettes, and perforated patch-clamp recordings combined with pharmacological methods were employed on the adherent healthy neurons. In current-clamp mode, the spontaneous action potential (AP) of the ventral horn neurons in the spinal cord was recorded. The effects of pretreatment with different concentrations of etomidate on AP recorded in the ventral horn neurons were examined. In the voltage-clamp mode, nicotine was applied to induce inward currents in the ventral horn neurons, and the effect of pretreatment with etomidate on the inward currents induced by nicotine were examined with different etomidate concentrations, different holding potentials and different use time.

Results: The isolated ventral horn neurons were in good condition with large diverse somata and intact processes. The isolated spinal ventral horn neurons (=21) had spontaneous action potentials, and were continuously perfused for 2 min with 0.3, 3.0 and 30.0 μmol/L etomidate. Compared with those before administration, the AP amplitude, spike potential amplitude and overshoot were concentration-dependently suppressed ( < 0.01), and spontaneous discharge frequency was obviously reduced ( < 0.01, =12). The APs of the other 9 neurons were completely abolished by etomidate at 3.0 or 30 μmol/L. At the same holding potential (VH=-70 mV), pretreatment with 0.3, 3.0 or 30.0 μmol/L etomidate for 2 min concentration-dependently suppressed the current amplitude induced by 0.4 mmol/L nicotine ( < 0.01, =7). At the holding potentials of - 30, - 50, and - 70 mV, pretreatment with 30.0 μmol/L etomidate for 2 min voltage-dependently suppressed the current amplitude induced by 0.4 mmol/L nicotine ( < 0.01, =6 for each holding potential). During the 6 min of 30.0 μmol/L etomidate pretreatment, the clamped cells were exposed to 0.4 mmol/L nicotine for 4 times at 0, 2, 4, and 6 min (each exposure time was 2 s), and the nicotinic current amplitude decreased gradually as the number of exposures increased. But at the same concentration, two nicotine exposures (one at the beginning and the other at the end of the 6 min pretreatment) resulted in a significantly lower inhibition rate compared with 4 nicotine exposures ( < 0.01, =6).

Conclusions: etomidate reduces the excitability of the spinal ventral neurons in a concentration-dependent manner and suppresses the function of nAChR in a concentration-, voltage-, and use-dependent manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7277324PMC
http://dx.doi.org/10.12122/j.issn.1673-4254.2020.05.10DOI Listing

Publication Analysis

Top Keywords

ventral horn
32
horn neurons
24
spinal cord
16
300 μmol/l
16
μmol/l etomidate
16
current amplitude
12
mmol/l nicotine
12
neurons
11
etomidate
10
ventral
9

Similar Publications

Engaging dystonia networks with subthalamic stimulation.

Proc Natl Acad Sci U S A

January 2025

Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115.

Deep brain stimulation is an efficacious treatment for dystonia. While the internal pallidum serves as the primary target, recently, stimulation of the subthalamic nucleus (STN) has been investigated. However, optimal targeting within this structure and its surroundings have not been studied in depth.

View Article and Find Full Text PDF

Anurans are famous for having evolved a highly simplified skull through bone loss and fusion events. Nevertheless, their skeleton displays a rich morphological diversity associated with adaptations to diverse lifestyles and ecological niches. Here, we report larval skull ossification in the Andean toad Rhinella spinulosa (Bufonidae), and compare it to the phylogenetically distant genetic model organism Xenopus tropicalis (Pipidae).

View Article and Find Full Text PDF

Neuroprotective Effects of Chaperonin Containing TCP1 Subunit 2 (CCT2) on Motor Neurons Following Oxidative or Ischemic Stress.

Neurochem Res

November 2024

Department of Neurosurgery, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, 07441, South Korea.

Chaperonin containing TCP1 (CCT) is an essential protein that controls proteostasis following spinal cord damage. In particular, CCT2 plays an important role in neuronal death in various neurological disorders; however, few studies have investigated the effects of CCT2 on ischemic damage in the spinal cord. In the present study, we synthesized a cell-permeable Tat-CCT2 fusion protein and observed its effects on HO-induced oxidative damage in NSC34 motoneuron-like cells and in the spinal cord after ischemic injury.

View Article and Find Full Text PDF

Spinal projection neurons (PNs) are defined by long axons that travel from their origin in the spinal cord to the brain where they relay sensory information from the body. The existence and function of a substantial axon collateral network, also arising from PNs and remaining within the spinal cord, is less well appreciated. Here we use a retrograde viral transduction strategy to characterise a novel subpopulation of deep dorsal horn spinoparabrachial neurons.

View Article and Find Full Text PDF
Article Synopsis
  • Disorders of consciousness (DoC) refer to conditions where a person has reduced awareness or ability to respond, and deep brain stimulation (DBS) is being explored as a treatment, with varying effectiveness based on patient specifics and stimulation methods.
  • In a study of 40 DoC patients receiving DBS, improved consciousness was linked to better gray matter preservation, particularly in the striatum, and effective stimulation targeted specific brain areas, particularly the thalamic centromedian-parafascicular complex.
  • The research highlights the need for precise electrode placement and suggests a connection between successful DBS treatment for DoC and mechanisms involved in other conditions that impair consciousness, such as absence seizures and brain lesions
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!