Chromium (Cr) can coexist with other heavy metals in the blood of chronically chromate-exposed individuals. However, few studies have explored the health impacts of other hazardous metals after exposure to hexavalent chromium [Cr(VI)]. This study aimed to assess the modification effects of blood lead (Pb) on the genetic damage induced by Cr(VI). During 2010-2019, 1000 blood samples were collected from 455 workers exposed to chromate and 545 workers not exposed to chromate from the same factory with similar labor intensity. The levels of Cr and Pb were measured in whole blood samples. Micronucleus frequency (MNF) and urinary 8-hydroxydeoxyguanosine (8-OHdG) were measured to reflect different types of genetic damage. Multivariate linear regression analyses were performed to evaluate the associations between hazardous metals and the modification effects of Pb on genetic damage. The geometric mean levels of Cr and Pb in the exposure group were significantly higher than those in the control group [Cr: 6.42 (6.08- 6.79) vs. 1.29 (1.22- 1.36) μg/L; Pb: 38.82 (37.22- 40.50) vs. 34.47 (33.15- 35.85) μg/L]. The geometric means of urinary 8-OHdG and MNF in exposure group were 4.00 (3.64- 4.40) μg/g and 5.40 (4.89- 5.97) ‰, respectively, significantly higher than the 3.20 (2.94- 3.48) μg/g and 4.57 (4.15- 5.03) ‰, respectively, in control group. logCr was independently and positively associated with urinary 8-OHdG (β = 0.143, 95% CI: 0.082- 0.204) and MNF (β = 0.303, 95%CI: 0.020- 0.587). With the change in circulating Pb levels, the types of genetic damage induced by Cr(VI) were different. At low levels of circulating Pb (<30.80 μg/L), chromate mainly caused changes in 8-OHdG, while at high circulating Pb levels (≥44.88 μg/L), chromate induced alterations in MNF. The findings suggested that chromate exposure could cause multiple types of genetic damage, and circulating Pb might modify the association between circulating Cr and the form of genetic damage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.141824DOI Listing

Publication Analysis

Top Keywords

genetic damage
20
hazardous metals
8
modification effects
8
damage induced
8
induced crvi
8
blood samples
8
workers exposed
8
exposed chromate
8
types genetic
8
exposure group
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!