Biogenic aerosols such as airborne grass pollen affect the public health badly by putting additional distress on people already suffering from cardiovascular and respiratory diseases. In Belgium, daily airborne pollen concentrations are monitored offline at a few sites only, hampering the timely coverage of the country and short-term forecasts. Here we apply the Chemistry Transport Model SILAM to the Belgian territory to model the spatio-temporal airborne grass pollen levels near the surface based on bottom-up inventories of grass pollen emissions updated with the Copernicus land monitoring Service grassland map of 2015. Transport of aerosols in SILAM is driven by ECMWF ERA5 meteorological data. The emitted grass pollen amounts in SILAM are computed by the multiplication of the grass pollen source map with the release rate determined by the seasonal shape production curve during the grass flowering period. The onset and offset of this period follow a location-dependent prescribed calendar days. Here we optimize the grass pollen seasonal start and end in SILAM by comparing a 2008-2018 time series of daily airborne grass pollen concentrations from the Belgian aerobiological surveillance network with the simulations. The effect of the spatial distribution of grass pollen sources is quantified by constructing pollen source-receptor relations using model simulations with varying grass pollen emissions in five areas of the model domain as input. Up to 33% of the airborne grass pollen in one area was transport from others areas inside Belgium. Adjusting the start and end of the grass pollen season improved the model performance substantially by almost doubling the correlation with local observations. By introducing the temporal scaling of the inter-seasonal pollen amounts in the model, an additional R increase up to 22% was obtained. Further improvements can be made by including more detailed grass pollen sources and more dynamic start and end dates of the pollen season.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.141903DOI Listing

Publication Analysis

Top Keywords

grass pollen
52
pollen
17
airborne grass
16
grass
13
pollen levels
8
daily airborne
8
pollen concentrations
8
pollen emissions
8
pollen amounts
8
pollen sources
8

Similar Publications

Article Synopsis
  • Eosinophilic esophagitis (EoE) is a chronic condition caused by eosinophilic inflammation in the esophagus, mainly triggered by food and air allergens.
  • A 4-year-old boy diagnosed with EoE showed improvement with topical steroids, and by age 7, he also developed a grass pollen allergy.
  • Significant increases in eosinophil counts and pediatric symptom scores were noted from winter to spring, suggesting that environmental allergens may play a role in EoE, which could influence treatment timing and strategies during allergy seasons.
View Article and Find Full Text PDF

Alfalfa ( L.), a prominent perennial forage in the legume family, is widely cultivated across Europe and America. Given its substantial economic value for livestock, breeding efforts have focused on developing high-yield and high-quality varieties since the discovery of CMS lines.

View Article and Find Full Text PDF

Plastid-localized ZmENR1/ZmHAD1 complex ensures maize pollen and anther development through regulating lipid and ROS metabolism.

Nat Commun

December 2024

Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.

Lipid metabolism is critical for male reproduction in plants. Many lipid-metabolic genic male-sterility (GMS) genes function in the anther tapetal endoplasmic reticulum, while little is known about GMS genes involved in de novo fatty acid biosynthesis in the anther tapetal plastid. In this study, we identify a maize male-sterile mutant, enr1, with early tapetal degradation, defective anther cuticle, and pollen exine.

View Article and Find Full Text PDF

Modern maize (Zea mays ssp. mays) was domesticated from Teosinte parviglumis (Zea mays ssp. parviglumis), with subsequent introgressions from Teosinte mexicana (Zea mays ssp.

View Article and Find Full Text PDF

Invasive alien plant species (IAPS) are well known to disrupt biodiversity, natural ecosystems, and infrastructures, resulting in a significant worldwide economic cost. However, the impact of IAPS on human health has been generally disregarded, despite a significant potential risk. Currently, due to new evidence and the concept of , this concern is gaining strength.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!