Homocysteine induces oxidative stress and ferroptosis of nucleus pulposus via enhancing methylation of GPX4.

Free Radic Biol Med

Department of Orthopaedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3, Qingchun Road East, Hangzhou, 310016, PR China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, PR China. Electronic address:

Published: November 2020

Homocysteine (Hcy) is an amino acid involved in gene methylation. Plasma concentration of Hcy is elevated in the pathological condition hyperhomocysteinemia (HHcy), which increases the risk of disorders of the vascular, nervous and musculoskeletal systems, including chondrocyte dysfunction. The present study aimed to explore the role of Hcy in intervertebral disc degeneration (IVDD), using a range of techniques. A clinical epidemiological study showed that HHcy is an independent risk factor for human IVDD. Cell culture using rat nucleus pulposus cells showed that Hcy promotes a degenerative cell phenotype (involving increased oxidative stress and cell death by ferroptosis) which is mediated by upregulated methylation of GPX4. An in-vivo mouse 'puncture' model of IVDD showed that folic acid (which is used to treat HHcy in humans) reduced the ability of diet-induced HHcy to promote IVDD. We conclude that Hcy upregulates oxidative stress and ferroptosis in the nucleus pulposus via enhancing GPX4 methylation, and is a new contributing factor in IVDD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2020.08.029DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
nucleus pulposus
12
stress ferroptosis
8
ferroptosis nucleus
8
pulposus enhancing
8
methylation gpx4
8
hcy
5
ivdd
5
homocysteine induces
4
induces oxidative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!