Oesophageal cancer is one of the most lethal malignancies worldwide, whereas the 5-year survival is less than 20%. Although the detailed carcinogenic mechanisms are not totally clear, recent genomic sequencing data showed dysregulation of Hippo signalling could be a critical factor for oesophageal squamous cell carcinoma (ESCC) progression. Therefore, understanding of the molecular mechanisms that control Hippo signalling activity is of great importance to improve ESCC diagnostics and therapeutics. Our current study revealed RACO-1 as an inhibitory protein for YAP/TEAD axis. Depletion of RACO-1 increases the protein level of YAP and expression of YAP/TEAD target gene. Besides, RACO-1 silencing could promote ESCC cell invasion and migration, which effect could be rescued by YAP depletion in ESCC cells. Immunoprecipitation showed that RACO-1 associated with YAP and promote ubiquitination and degradation of YAP at k48 poly-ubiquitination site. Our research discovered a new regulator of Hippo signalling via modulating YAP stability. RACO-1 could be a promising factor, which serves cancer diagnostics and therapeutics in ESCC patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579699PMC
http://dx.doi.org/10.1111/jcmm.15811DOI Listing

Publication Analysis

Top Keywords

hippo signalling
16
oesophageal squamous
8
squamous cell
8
cell carcinoma
8
diagnostics therapeutics
8
raco-1
6
escc
5
yap
5
raco-1 modulates
4
hippo
4

Similar Publications

Bone defects caused by fractures and diseases often do not heal spontaneously. They require external agents for repair and regeneration. Bone tissue engineering is emerging as a promising alternative to traditional therapies like autografts and allografts.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) poses a significant challenge in oncology due to its dismal prognosis and limited therapeutic options. In this study, we investigated the role of miR-301a in facilitating crosstalk between the Hedgehog (Hh) and HIPPO/YAP signaling pathways during the progression of PDAC. Our findings revealed that miR-301a served as a central regulatory node, targeting Gli1 within the Hh pathway and STK4 within the HIPPO/YAP pathway.

View Article and Find Full Text PDF

Transcription coactivator YAP1 promotes CCND1/CDK6 expression, stimulating cell proliferation in cloned cattle placentas.

Zool Res

January 2025

State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, Inner Mongolia 010070, China.

Somatic cell nuclear transfer (SCNT) has been successfully employed across various mammalian species, yet cloned animals consistently exhibit low pregnancy rates, primarily due to placental abnormalities such as hyperplasia and hypertrophy. This study investigated the involvement of the Hippo signaling pathway in aberrant placental development in SCNT-induced bovine pregnancies. SCNT-derived cattle exhibited placental hypertrophy, including enlarged abdominal circumference and altered placental cotyledon morphology.

View Article and Find Full Text PDF

Mechanism and therapeutic potential of hippo signaling pathway in type 2 diabetes and its complications.

Biomed Pharmacother

January 2025

College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China. Electronic address:

Loss of pancreatic islet cell mass and function is one of the most important factors in the development of type 2 diabetes mellitus, and hyperglycemia-induced lesions in other organs are also associated with apoptosis or hyperproliferation of the corresponding tissue cells. The Hippo signaling pathway is a key signal in the regulation of cell growth, proliferation and apoptosis, which has been shown to play an important role in the regulation of diabetes mellitus and its complications. Excessive activation of the Hippo signaling pathway under high glucose conditions triggered apoptosis and decreased insulin secretion in pancreatic islet cells, while dysregulation of the Hippo signaling pathway in the cells of other organ tissues led to proliferation or apoptosis and promoted tissue fibrosis, which aggravated the progression of diabetes mellitus and its complications.

View Article and Find Full Text PDF

Noncanonical role of Golgi-associated macrophage TAZ in chronic inflammation and tumorigenesis.

Sci Adv

January 2025

Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea.

Until now, Hippo pathway-mediated nucleocytoplasmic translocation has been considered the primary mechanism by which yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) transcriptional coactivators regulate cell proliferation and differentiation via transcriptional enhanced associate domain (TEAD)-mediated target gene expression. In this study, however, we found that TAZ, but not YAP, is associated with the Golgi apparatus in macrophages activated via Toll-like receptor ligands during the resolution phase of inflammation. Golgi-associated TAZ enhanced vesicle trafficking and secretion of proinflammatory cytokines in M1 macrophage independent of the Hippo pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!