South Asia is comprised of several countries, including Bangladesh, Pakistan, India, and Sri Lanka, all ranked highly at risk of climatic variability. The region's susceptibility to climate change can be attributed to both its spatial and inherent characteristics. Considering the countries' high dependence on agricultural products, to support their economies and growing populations, it is vital to measure the factors impacting crop productivity. This study quantifies the change in temperature and precipitation, coupled with their respective effects on the productivity of three major crops, wheat, rice and cotton, within two of Pakistan's largest provinces: Punjab and Sindh. Based on the collated data, multivariate regression analysis is conducted. Moreover, highly vulnerable areas to climate change have been identified under RCP scenarios 4.5 and 8.5, until the end of this century. Results reveal that there is a substantial increasing trend in temperature, whereas precipitation has high inter-annual variability. Regression outcomes, based on fixed/random effects models, indicate that temperature above threshold values of 24.3 °C, 33.0 °C and 32.0 °C for wheat, rice and cotton, respectively, negatively impacts productivity (statistically significant). Precipitation is statistically insignificant in explaining its role in crop productivity. Overall, the region is heading towards temperature and threshold exceedances at an alarming rate, which will impact the overall availability of suitable crop-growing areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-020-10655-w | DOI Listing |
BMC Plant Biol
January 2025
Department of Soil Science, University of Tehran, Tehran, Iran.
Soil compaction is a pressing issue in agriculture that significantly hinders plant growth and soil health, necessitating effective strategies for mitigation. This study examined the effects of sugarcane bagasse, both in its raw form and as biochar, along with biological activators (Bacillus simplex UTT1 and Phanerochaete chrysosporium) on soil characteristics and corn (Zea mays L.) plant biomass in a compacted soil.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Center for Eco-Environment Restoration of Hainan Province, School of Ecology, Hainan University, Haikou, 570228, China.
Drought has a significant impact on ecosystem functions, especially on the biogeochemical cycling of phosphorus (P), which is a crucial nutrient for plant growth and productivity. Despite its importance, the effects of different drought scenarios on soil P cycling and availability remain poorly understood in previous studies. This study simulated drought conditions in tropical soils using maize as a test crop under varying field capacity (FC) levels (100%, 80%, 60%, 40%, and 20%) over a 60-day pot experiment.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Horticulture, Sichuan Agricultural University, Chengdu, 611130, China.
Background: Phaseolus vulgaris is a warm-season crop sensitive to low temperatures, which can adversely affect its growth, yield, and market value. Exogenous growth regulators, such as diethyl aminoethyl hexanoate (DA-6), have shown potential in alleviating stress caused by adverse environmental conditions. However, the effects that DA-6 has on P.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab 21934, Alexandria, Egypt.
Background: Heavy metal contamination, particularly from lead (Pb), poses a significant threat to plant agriculture worldwide, adversely affecting growth, physiological functions, and yield. Signalling molecules such as calcium and salicylic acid are known to mitigate various stresses in plants, prompting this study to explore their interaction with Pb stress in wheat.
Methods: A pot experiment was conducted in which wheat grains were primed with either distilled water, 5 mM calcium (Ca), or 0.
Sci Data
January 2025
Department of Biotechnology, University of the Western Cape, Bellville, South Africa.
Drought and heat stress significantly limit crop growth and productivity. Their simultaneous occurrence, as often observed in summer crops, leads to larger yield losses. Sorghum is well adapted to dry and hot conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!