Objective: To investigate the protective effect of serine hydroxymethyl transferase 2 (SHMT2) against hepatic ischemia-reperfusion injury in mice.

Methods: Sixty C57BL/6 mice were divided equally into sham-operated group, saline adeno-associated virus group (AVV-GFP), and adeno-associated virus silencing group (AAV-SHMT2). The adeno-associated virus and normal saline were injected into the tail vein of the mice 2 weeks before establishment of a 70% ischemia-reperfusion model in the liver. qPCR, Western blotting, immunofluorescence and immunohistochemistry were used to detect the changes of AST/ALT concentration, SHMT2, JNK, NF-κB, caspase-3 and downstream inflammatory factors in the mice, and HE staining was used to observe the pathological damage of the liver tissue in each group; the cell apoptosis in the liver was detected using TUNEL assay.

Results: The expression of SHMT2 increased with time after hepatic ischemia-reperfusion and reached the highest level at 24 h (the relative expression was 1.5, < 0.05). At 24 h after hepatic ischemia-reperfusion, the levels of AST/ALT in AAV-SHMT2 group (588/416 U/L) were significantly higher than those in the control group (416/345 U/L) and the empty vector group (387/321 U/L) ( < 0.05). Compared with those in the control group and the empty vector group, the level of SHMT2 was significantly decreased in AAV-SHMT2 group (with a relative expression of 0.24, < 0.05), the levels of p-JNK and p-p65 were significantly increased (relative expression of 0.80 and 0.97, respectively, < 0.05), and the levels TNF-α and IL-1β were consistently elevated (relative expression levels of 1.6 and 1.2, respectively, < 0.05). No significant differences were found in these parameters between the empty vector group and the control group (>0.05).

Conclusions: SHMT2 may alleviate liver cell apoptosis in mice with hepatic ischemia-reperfusion injury by inhibiting the activation of JNK pathway and excessive activation of NF-κB pathway to reduce hepatic damage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7225116PMC
http://dx.doi.org/10.12122/j.issn.1673-4254.2020.04.09DOI Listing

Publication Analysis

Top Keywords

hepatic ischemia-reperfusion
20
relative expression
16
ischemia-reperfusion injury
12
group
12
adeno-associated virus
12
control group
12
empty vector
12
vector group
12
cell apoptosis
8
aav-shmt2 group
8

Similar Publications

Remote ischemic conditioning (RIC), including pre-conditioning (RIPC, before the ischemic event), per-conditioning (RIPerC, during the ischemic event), and post-conditioning (RIPostC, after the ischemic event), protects the liver in animal hepatic ischemia-reperfusion injuries models. However, several questions regarding the optimal timing of intervention and administration protocols remain unanswered. Therefore, the preclinical evidence on RIC in the HIRI models was systematically reviewed and meta-analyzed in the present review to provide constructive and helpful information for future works.

View Article and Find Full Text PDF

Hepatic ischemia-reperfusion (I/R) injury frequently occurs during the perioperative phase of liver surgery. Inappropriate activation of STING signaling can trigger excessive inflammation response to aggravate hepatic I/R injury. Dimethyl fumarate (DMF) is an FDA-approved immunomodulatory drug used to treat multiple sclerosis and psoriasis due to its notable anti-inflammation properties.

View Article and Find Full Text PDF

Ischemia-reperfusion injury (IRI) is a common pathogenic situation that arises throughout all liver surgeries, including liver transplants. We aimed to compare the preventive effects of valsartan (VST) against valsartan + sacubitril (LCZ696) on hepatic injury caused by IRI. A total of thirty-six male Westar albino rats were split into six groups randomly: sham, IRI, VST + IRI, LCZ696 + IRI, VST, and LCZ696.

View Article and Find Full Text PDF

GRINA alleviates hepatic ischemia‒reperfusion injury-induced apoptosis and ER-phagy by enhancing HRD1-mediated ATF6 ubiquitination.

J Hepatol

January 2025

Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Lead contact. Electronic address:

Background & Aims: Hepatic ischemia‒reperfusion injury (HIRI) is a critical complication of liver surgery and transplantation that contributes significantly to severe organ failure. GRINA, a calcium-regulating endoplasmic reticulum (ER) protein, plays an essential role in controlling the unfolded protein response; however, its role in HIRI remains unclear. The aim of this study was to investigate the function of GRINA in HIRI and explore its potential as a therapeutic target.

View Article and Find Full Text PDF

Recipients often suffer from hyperlactatemia during liver transplantation (LT), but whether hyperlactatemia exacerbates hepatic ischemia-reperfusion injury (IRI) after donor liver implantation remains unclear. Here, the role of hyperlactatemia in hepatic IRI is explored. In this work, hyperlactatemia is found to exacerbate ferroptosis during hepatic IRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!