Recent research showed that the rotational degree of freedom in stacking 2D materials yields great changes in the electronic properties. Here, we focus on an often overlooked question: are twisted geometries stable and what defines their rotational energy landscape? Our simulations show how epitaxy theory breaks down in these systems, and we explain the observed behavior in terms of an interplay between flexural phonons and the interlayer coupling, governed by the moiré superlattice. Our argument, applied to the well-studied MoS/graphene system, rationalizes experimental results and could serve as guidance to design twistronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c13971 | DOI Listing |
J Biomol Struct Dyn
January 2025
College of Applied Medical Sciences, lmam Abdulrahman Bin Faisal University (lAU), Dammam, Saudi Arabia.
The present study explores the conformational dynamics of the membrane protein of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) within the Endoplasmic Reticulum-Golgi Intermediate Compartment (ERGIC) complex using an all-atomistic molecular dynamics simulation approach. Significant structural changes were observed in the N-terminal, C-terminal, transmembrane, and beta-sheet sandwich domains of the MERS-CoV membrane protein. This study also highlights the structural similarities between the MERS-CoV and the SARS-CoV-2 membrane proteins, particularly in how both exhibit a distinct kink in the transmembrane helix caused by aromatic residue-lipid interactions.
View Article and Find Full Text PDFCrit Rev Anal Chem
January 2025
Department of Chemistry, University of Delhi, New Delhi, India.
Heavy metal pollution is a major environmental and health problem due to the toxicity and persistence of metals such as lead, mercury, cadmium, and arsenic in water, soil, and air. Advances in sensor technology have significantly improved the detection and quantification of heavy metals, providing real-time monitoring and mitigation tools. This review explores recent developments in heavy metal detection, focusing on innovative uses of immobilized chromogenic reagents, nanomaterials, perovskites, and nanozymes.
View Article and Find Full Text PDFAMB Express
January 2025
Faculty of Basic Sciences, King Salman International University, South Sinai City, 46612, Egypt.
The rise of antimicrobial-resistant microorganisms (AMR) poses a significant global challenge to human health and economic stability. In response, various scientific communities are seeking safe alternatives to antibiotics. This study comprehensively investigates the antibacterial effects of red dye derived from Monascus purpureus against three bacterial pathogens: Salmonella typhimurium ATCC14028, Escherichia coli ATCC8739, and Enterococcus faecalis ATCC25923.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Agricultural Engineering, Kongunadu College of Engineering and Technology, Trichy, Tamil Nadu, India.
This study investigates the enhancement of solar cell efficiency using nanofluid cooling systems, focusing on citrate-stabilized and PVP-stabilized silver nanoparticles. Traditional silicon-based and perovskite solar cells were examined to assess the impact of these nanofluids on efficiency improvement and thermal management. A Central Composite Design (CCD) was employed to vary nanoparticle concentration (0.
View Article and Find Full Text PDFCell Death Dis
January 2025
Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
Doxorubicin, a representative drug of the anthracycline class, is widely used in cancer treatment. However, Doxorubicin-induced cardiotoxicity (DIC) presents a significant challenge in its clinical application. Mitochondrial dysfunction plays a central role in DIC, primarily through disrupting mitochondrial dynamics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!