[The therapeutic effect of carnosine combined with dexamethasone in the lung injury of seawater-drowning].

Zhonghua Jie He He Hu Xi Za Zhi

Department of Respiratory Disease and Critical Care Medicine, the Second Affiliated Hospital, Air Force Medical University, Xi'an 710038, China.

Published: September 2020

To explore the therapeutic effect of carnosine and dexamethasone in lung injury caused by seawater drowning. The experiments with A549 cells were divided into 5 groups: blank control group (C), seawater injury group (S), seawater injury+dexamethasone treatment group (S+D), seawater injury+carnosine treatment group (S+C), seawater injury dexamethasone and carnosine combined therapy(S+D+C) group. The optimal therapeutic dose of drugs for the treatment of seawater drowning lung injury was tested . Based on the optimal dose, the levels of TNF-α and IL-6 in each group at different time points were detected at the cell level by ELISA. The level of apoptosis was detected by flow cytometry. The experiments with SD rats were randomly divided into 5 groups (8 each): blank control group (RC),seawater drowning injury group (RS),seawater drowning injury+dexamethasone treatment group (RSD),seawater drowning injury+carnosine treatment group (RSC),seawater drowning injury+dexamethasone+carnosine combined treatment group (RSDC). The animal model with seawater inhalation acute lung injury was made by intratracheal infusion (4 ml/kg). The pathological changes of the lungs were observed. The expression of superoxide dismutase (SOD) in each group was detected by Western blot. The results of experiments showed significant increase of apoptosis after seawater injury. The normal cell rate in group C was 98.3% while the apoptosis rate was 1.7%. The normal cell in group S was 18.8%, and the apoptosis rate was 81% (0.01). TNF-α and IL-6 levels in group S increased to 180.25 ng/L and 61.56 ng/L, respectively, which were statistically significant compared with group C (0.01). After drug protection, apoptosis was reduced in S+D group, S+C group and S+D+C group, with apoptosis rates of 65.4%, 70.9% and 42.6%, respectively. The contents of TNF-α and IL-6 also decreased in the S+D+C group (0.01). The results of experiments showed obvious lung injury and disordered lung tissue structures in the RS group at 4 h after modeling. There was hemorrhage in the pulmonary interstitium and a large number of inflammatory cells. Results of western blot showed that the expression of SOD increased in the RS group. Compared with RS group, the treatment alleviated acute lung injury and decreased the expression level of SOD in RSD, RSC and RSDC groups (0.01). Dexamethasone and carnosine reduced the influence of seawater inhalation on the lung in the rat model. The positive effect of combination of these two drugs on lung injury caused by seawater inhalation was stronger than a single drug.

Download full-text PDF

Source
http://dx.doi.org/10.3760/cma.j.cn112147-20191028-00717DOI Listing

Publication Analysis

Top Keywords

lung injury
28
group
23
treatment group
20
seawater injury
12
tnf-α il-6
12
seawater inhalation
12
injury
11
seawater
10
lung
9
therapeutic carnosine
8

Similar Publications

Gram-positive bacterial pneumonia is a significant cause of hospitalization and death. Shortage of a good experimental model and therapeutic targets hinders the cure of acute lung injury (ALI). This study has established a mouse model of ALI using Gram-positive bacteria Lactobacillus casie cell wall extracts (LCWE) and identified the key regulator NLRP3.

View Article and Find Full Text PDF

Positive end-expiratory pressure (PEEP) titration is crucial for improving oxygenation and preventing ventilator-induced lung injury in acute hypoxemic respiratory failure. Electrical impedance tomography (EIT) offers real-time, bedside monitoring of lung ventilation distribution, potentially guiding individualized PEEP settings.

View Article and Find Full Text PDF

Maternal obesity increases risk for bronchopulmonary dysplasia (BPD) by up to 42%. Identifying metabolic features that may contribute to the association between maternal pre-pregnancy body mass index (BMI) and BPD is critical in defining the molecular relationship between these conditions. We investigated the association between maternal obesity and BPD using newborn screen metabolites as an explanatory variable.

View Article and Find Full Text PDF

Objectives: To determine the association of whole blood and other blood products (components, prothrombin complex concentrate, and fibrinogen concentrate) with the development of acute respiratory distress syndrome (ARDS) among blood recipients.

Design: Retrospective cohort study.

Setting: American College of Surgeons Trauma Quality Improvement Program (TQIP) database between 2020 and 2021.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!