ZnO and ZnO:Al thin films have been successfully synthesized by simple solution processable method at low temperature. Highly crystalline (002) preferentially oriented, uniform, and smooth ZnO:Al thin films are produced. The electrical, J-V and C-V, measurements revealed higher current flow and more carrier concentration, respectively, for ZnO:Al samples compared with pristine ZnO. ZnO- and ZnO:Al-based field effect transistors (FETs) were fabricated using SiO and TiO gate dielectric layers onto flexible plastic, ITO and rigid, p-Si substrates. The ZnO:Al-based FETs measured better transistor performance with both SiO and TiO gate dielectrics as compared with ZnO-based TFTs. The saturated field effect mobilities 5.78 and 4.96 cm/Vs were measured for ZnO:Al-based TFTs with SiO and TiO dielectrics, which reasonably higher than 0.51 and 0.43 cm/Vs, respectively, measured for pristine ZnO TFTs. The effect of smooth surface and reduced grain boundaries of ZnO:Al layer contributed to measure the low-interface trap density and trap density at grain boundaries. The reported procedure can be applicable to produce large area transparent electronics onto flexible plastic substrates.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-020-10459-yDOI Listing

Publication Analysis

Top Keywords

sio tio
12
field transistors
8
znoal thin
8
thin films
8
pristine zno
8
tio gate
8
flexible plastic
8
cm/vs measured
8
grain boundaries
8
trap density
8

Similar Publications

Facile Formation of Durable SiO-TiO Coatings on Plastic Films for Self-Cleaning and Antifogging.

ACS Appl Mater Interfaces

January 2025

CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.

Surface fogging affects the light transmittance of various transparent materials and poses potential safety hazards. Superhydrophilic TiO surfaces can effectively prevent fogging by promoting continuous water film formation; however, they often struggle to maintain stable hydrophilicity and adhesion on plastic films. Self-cleaning and antifogging coatings on plastic substrates are crucial for applications requiring long-term clarity and minimal maintenance costs.

View Article and Find Full Text PDF

Efficient visible-light-driven photocatalytic degradation of antibiotics in water by MXene-derived TiO-supported SiO/TiC composites: Optimisation, mechanism and toxicity evaluation.

Environ Pollut

December 2024

Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran; Drilling Nanofluid Lab, Shiraz University, Shiraz, Iran; Nanotechnology Research Institute, Shiraz University, Shiraz, Iran. Electronic address:

Photocatalytic technology has emerged as a promising solution to global water contamination, mainly through the effective degradation of persistent pharmaceutical pollutants. However, a few challenges still exist in enhancing degradation efficiency, reducing the toxicity of by-products, and ensuring cost-effective scalability. This study focuses on Tetracycline Hydrochloride (TCH) as an index antibiotic pollutant to evaluate the performance of a novel MXene-derived TiO-supported SiO₂/TiC composite (SMXT) synthesized using ultrasonic and wet impregnation techniques.

View Article and Find Full Text PDF

Multi-heterointerface charge transfer in amine-functionalized cadmium sulfide-copper sulfide@titanium dioxide hollow spheres with rich oxygen vacancies for carbon dioxide photoreduction.

J Colloid Interface Sci

December 2024

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China. Electronic address:

Photocatalytically reducing CO into high-value-added chemical materials has surfaced as a viable strategy for harnessing solar energy and mitigating the greenhouse effect. But the inadequate separation of the photogenerated electron-hole pair remains a major obstacle to CO photoreduction. Constructing heterostructure photocatalysts with efficient interface charge transfer is a promising approach to solving the above problems.

View Article and Find Full Text PDF

Superhydrophobic Surfaces as a Potential Skin Coating to Prevent Jellyfish Stings: Inhibition and Anti-Tentacle Adhesion in Nematocysts of Jellyfish .

Materials (Basel)

December 2024

CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.

The development of skin-protective materials that prevent the adhesion of cnidarian nematocysts and enhance the mechanical strength of these materials is crucial for addressing the issue of jellyfish stings. This study aimed to construct superhydrophobic nanomaterials capable of creating a surface that inhibits nematocyst adhesion, therefore preventing jellyfish stings. We investigated wettability and nematocyst adhesion on four different surfaces: gelatin, polydimethylsiloxane (PDMS), dodecyl trichlorosilane (DTS)-modified SiO, and perfluorooctane triethoxysilane (PFOTS)-modified TiO.

View Article and Find Full Text PDF

Adhesive modification with nanoparticles affects multiple adhesives properties, making it essential to evaluate and compare changes across all key characteristics-existing positive and limiting properties. This study investigates the impact of silica (SiO) and titanium dioxide (TiO) nanoparticles on the elasticity and aging resistance of PVAc adhesive. Tensile properties were determined according to ISO 527-3:2018, with Young's moduli of elasticity Ε, and stress-strain curves for neat PVAc, nano-SiO PVAc, and nano-TiO PVAc adhesive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!