The plant extract aristolochic acid (AA), containing aristolochic acid I (AAI) and II (AAII) as major components, causes aristolochic acid nephropathy and Balkan endemic nephropathy, unique renal diseases associated with upper urothelial cancer. Differences in the metabolic activation and detoxification of AAI and AAII and their effects on the metabolism of AAI/AAII mixture in the plant extract might be of great importance for an individual's susceptibility in the development of AA-mediated nephropathies and malignancies. Here, we investigated metabolism of AAI and AAII after ip administration to Wistar rats as individual compounds and as AAI/AAII mixture using high performance liquid chromatography/electrospray ionization mass spectrometry. Experimental findings were supported by theoretical calculations using density functional theory. We found that exposure to AAI/AAII mixture affected the generation of their oxidative and reductive metabolites formed during Phase I biotransformation and excreted in rat urine. Several Phase II metabolites of AAI and AAII found in the urine of exposed rats were also analyzed. Our results indicate that AAI is more efficiently metabolized in rats than AAII. Whereas AAI is predominantly oxidized during metabolism, its reduction is the minor metabolic pathway. In contrast, AAII is mainly metabolized by reduction. The oxidative reaction only occurs if aristolactam II, the major reductive metabolite of AAII, is enzymatically hydroxylated, forming aristolactam Ia. In AAI/AAII mixture, the metabolism of AAI and AAII is influenced by the presence of both AAs. For instance, the reductive metabolism of AAI is increased in the presence of AAII while the presence of AAI decreased the reductive metabolism of AAII. These results suggest that increased bioactivation of AAI in the presence of AAII also leads to increased AAI genotoxicity, which may critically impact AAI-mediated carcinogenesis. Future studies are needed to explain the underlying mechanism(s) for this phenomenon.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.chemrestox.0c00198 | DOI Listing |
J Biol Chem
July 2024
Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, USA. Electronic address:
Aristolochic acids I and II (AA-I/II) are carcinogenic principles of Aristolochia plants, which have been employed in traditional medicinal practices and discovered as food contaminants. While the deleterious effects of AAs are broadly acknowledged, there is a dearth of information to define the mechanisms underlying their carcinogenicity. Following bioactivation in the liver, N-hydroxyaristolactam and N-sulfonyloxyaristolactam metabolites are transported via circulation and elicit carcinogenic effects by reacting with cellular DNA.
View Article and Find Full Text PDFPhytomedicine
December 2023
Beijing University of Chinese Medicine, Beijing 100029, PR China. Electronic address:
Background: The risk of compounds/drugs, including aristolochic acid-induced nephrotoxicity remains high and is a significant public health concern. Therefore, it is particularly important to select reasonable animal models for rapid screening and evaluation of different samples with complex chemical systems. The zebrafish (Danio rerio) has been used to study chemical-induced renal toxicity.
View Article and Find Full Text PDFFood Chem Toxicol
July 2023
Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Zhongzheng Dist., Taipei, 100025, Taiwan; Institute of Food and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Zhongzheng Dist., Taipei, 404333, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Zhongzheng Dist., Taipei, 100025, Taiwan. Electronic address:
Aristolochic acids (AAs) are naturally occurring genotoxic carcinogens linked to Balkan endemic nephropathy and aristolochic acid nephropathy. Aristolochic acid I and II (AA-I and AA-II) are the most abundant AAs, and AA-I has been reported to be more genotoxic and nephrotoxic than AA-II. This study aimed to explore metabolic differences underlying the differential toxicity.
View Article and Find Full Text PDFJ Ethnopharmacol
October 2023
Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, China. Electronic address:
Ethnopharmacological Relevance: The nephrotoxicity and carcinogenicity induced by traditional Chinese medicines (TCMs) containing aristolochic acids (AAs) and related compound preparations have greatly limited their clinical application. While the toxicity of AA-I and AA-II is relatively clear, there are marked differences in the toxic effects of different types of aristolochic acid analogues (AAAs). Thus, the toxicity of TCMs containing AAAs cannot be evaluated based on the toxicity of a single compound.
View Article and Find Full Text PDFJ Ethnopharmacol
May 2023
Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimen, Dongcheng District, Beijing, China. Electronic address:
Ethnopharmacological Relevance: Asarum heterotropoides f. mandshuricum (Maxim.) Kitag.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!