In Situ Controllable Generation of Copper Nanoclusters Confined in a Poly-l-Cysteine Porous Film with Enhanced Electrochemiluminescence for Alkaline Phosphatase Detection.

Anal Chem

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.

Published: October 2020

Copper nanoclusters (Cu NCs) as emerging luminescent metal NCs are gaining increasing attention owing to the comparatively low cost and high abundance of the Cu element in nature. However, it remains challenging to manipulate the optical properties of Cu NCs. Unlike most dispersed Cu NCs, whose luminescence efficiency was restricted by nonexcited relaxation, the Cu NCs confined in a porous poly-l-cysteine (poly-l-Cys) film were generated controllably with enhanced electrochemiluminescence (ECL) by in situ electrochemical reduction. Specifically, poly-l-Cys provided a porous structure to regulate the generation of Cu NCs within its holes, which not only increased the restriction on the intramolecular vibration and rotation of the ligands but also expedited the electron transfer near the electrode surface, reflecting in an enhancement of the ECL signal and efficiency. As an application of the confined Cu NCs, an ECL biosensor with high performance was constructed skillfully for highly sensitive detection of alkaline phosphatase (ALP), which adopted Cu NCs as the ECL luminophore and poly-l-Cys as a coreaction accelerator in a novel ECL ternary system (Cu NCs/SO/poly-l-Cys). Furthermore, an ingenious target amplification based on the combination of a DNA walker and click chemistry was developed to convert ALP to DNA strands efficiently, achieving great improvement in the recognition efficiency. As a result, the biosensor had a low detection limit (9.5 × 10 U·L) and a wide linear range (10-10 U·L) for ALP detection, which showed great promise for the detection of non-nucleic acid targets and the diagnosis of diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.0c03312DOI Listing

Publication Analysis

Top Keywords

copper nanoclusters
8
enhanced electrochemiluminescence
8
alkaline phosphatase
8
ncs
8
ncs ecl
8
detection
5
ecl
5
situ controllable
4
controllable generation
4
generation copper
4

Similar Publications

Copper-based catalysts are the choice for producing multi-carbon products (C2+) during CO2 electroreduction (CO2RR), where the Cu0Cuδ+ pair sites are proposed to be synergistic hotspots for C-C coupling. Maintaining their dynamic stability requires precise control over electron affinity and anion vacancy formation energy, posing significant challenges. Here, we present an in-situ reconstruction strategy to create dynamically stable Cu0Cu0.

View Article and Find Full Text PDF

Rapid and accurate detection of Escherichia coli (E. coli) is critical for maintaining water quality, and protecting aquatic ecosystems and public health. This research focuses on the development of a Förster resonance energy transfer (FRET)-based "turn-on" fluorescent nanosensor for real time, sensitive detection of E.

View Article and Find Full Text PDF

Hydrides in metal complexes or nanoclusters are typically viewed as electron-withdrawing. Several recent reports have demonstrated the emergence of "electron-donating" hydrides in tailoring the structure, electronic structure, and reactivity of metal nanoclusters. However, the number of such hydrides included in each cluster kernel is limited to one or two.

View Article and Find Full Text PDF

Gold nanoclusters (AuNCs) have been widely investigated because of their unique photoluminescence properties. However, the applications of AuNCs are limited by their poor stability and relatively low fluorescence. In the present work, we developed nanocomposites (L-Cys-AuNCs@ZIF-8) with high fluorescence and stability, which were constructed by encapsulating the water-dispersible L-Cys-AuNCs into a ZIF-8 via Zn-triggered growth strategy without high temperature and pressure.

View Article and Find Full Text PDF

This study investigates the modulations in the optical properties of cationic surfactant cetylpyridinium chloride (CPC) and hydrazine-mediated copper nanoclusters (CuNCs). By employing a bottom-up approach, we demonstrate the formation of blue-emitting CuNCs facilitated by CPC and hydrazine, where hydrazine acts both as a reducing and stabilizing agent. The optical properties of the CuNCs were systematically tuned by varying the chain length of the diamine, resulting in emissions ranging from blue to yellow.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!