Copper nanoclusters (Cu NCs) as emerging luminescent metal NCs are gaining increasing attention owing to the comparatively low cost and high abundance of the Cu element in nature. However, it remains challenging to manipulate the optical properties of Cu NCs. Unlike most dispersed Cu NCs, whose luminescence efficiency was restricted by nonexcited relaxation, the Cu NCs confined in a porous poly-l-cysteine (poly-l-Cys) film were generated controllably with enhanced electrochemiluminescence (ECL) by in situ electrochemical reduction. Specifically, poly-l-Cys provided a porous structure to regulate the generation of Cu NCs within its holes, which not only increased the restriction on the intramolecular vibration and rotation of the ligands but also expedited the electron transfer near the electrode surface, reflecting in an enhancement of the ECL signal and efficiency. As an application of the confined Cu NCs, an ECL biosensor with high performance was constructed skillfully for highly sensitive detection of alkaline phosphatase (ALP), which adopted Cu NCs as the ECL luminophore and poly-l-Cys as a coreaction accelerator in a novel ECL ternary system (Cu NCs/SO/poly-l-Cys). Furthermore, an ingenious target amplification based on the combination of a DNA walker and click chemistry was developed to convert ALP to DNA strands efficiently, achieving great improvement in the recognition efficiency. As a result, the biosensor had a low detection limit (9.5 × 10 U·L) and a wide linear range (10-10 U·L) for ALP detection, which showed great promise for the detection of non-nucleic acid targets and the diagnosis of diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.0c03312 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
National University of Singapore, Chemistry, 3 Science Drive 3, Singapore 117543, 117543, Singapore, SINGAPORE.
Copper-based catalysts are the choice for producing multi-carbon products (C2+) during CO2 electroreduction (CO2RR), where the Cu0Cuδ+ pair sites are proposed to be synergistic hotspots for C-C coupling. Maintaining their dynamic stability requires precise control over electron affinity and anion vacancy formation energy, posing significant challenges. Here, we present an in-situ reconstruction strategy to create dynamically stable Cu0Cu0.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Physics, Punjab Engineering College (Deemed to be University), Chandigarh, 160012, India.
Rapid and accurate detection of Escherichia coli (E. coli) is critical for maintaining water quality, and protecting aquatic ecosystems and public health. This research focuses on the development of a Förster resonance energy transfer (FRET)-based "turn-on" fluorescent nanosensor for real time, sensitive detection of E.
View Article and Find Full Text PDFSci Adv
January 2025
College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
Hydrides in metal complexes or nanoclusters are typically viewed as electron-withdrawing. Several recent reports have demonstrated the emergence of "electron-donating" hydrides in tailoring the structure, electronic structure, and reactivity of metal nanoclusters. However, the number of such hydrides included in each cluster kernel is limited to one or two.
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemistry, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
Gold nanoclusters (AuNCs) have been widely investigated because of their unique photoluminescence properties. However, the applications of AuNCs are limited by their poor stability and relatively low fluorescence. In the present work, we developed nanocomposites (L-Cys-AuNCs@ZIF-8) with high fluorescence and stability, which were constructed by encapsulating the water-dispersible L-Cys-AuNCs into a ZIF-8 via Zn-triggered growth strategy without high temperature and pressure.
View Article and Find Full Text PDFThis study investigates the modulations in the optical properties of cationic surfactant cetylpyridinium chloride (CPC) and hydrazine-mediated copper nanoclusters (CuNCs). By employing a bottom-up approach, we demonstrate the formation of blue-emitting CuNCs facilitated by CPC and hydrazine, where hydrazine acts both as a reducing and stabilizing agent. The optical properties of the CuNCs were systematically tuned by varying the chain length of the diamine, resulting in emissions ranging from blue to yellow.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!