A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Does implantoplasty affect the failure strength of narrow and regular diameter implants? A laboratory study. | LitMetric

Objective: To assess whether the impact of implantoplasty (IP) on the maximum implant failure strength depends on implant type/design, diameter, or material.

Methods: Fourteen implants each of different type/design [bone (BL) and tissue level (TL)], diameter [narrow (3.3 mm) and regular (4.1 mm)], and material [titanium grade IV (Ti) and titanium-zirconium alloy (TiZr)] of one company were used. Half of the implants were subjected to IP in a computerized torn. All implants were subjected to dynamic loading prior to loading until failure to simulate regular mastication. Multiple linear regression analyses were performed with maximum implant failure strength as dependent variable and IP, implant type/design, diameter, and material as predictors.

Results: Implants subjected to IP and TL implants showed statistically significant reduced implant failure strength irrespective of the diameter compared with implants without IP and BL implants, respectively. Implant material had a significant impact for TL implants and for regular diameter implants, with TiZr being stronger than Ti. During dynamic loading, 1 narrow Ti TL implant without IP, 4 narrow Ti TL implants subjected to IP, and 1 narrow TiZr TL implant subjected to IP were fractured.

Conclusion: IP significantly reduced the maximum implant failure strength, irrespective implant type/design, diameter, or material, but the maximum implant failure strength of regular diameter implants and of narrow BL implants remained high.

Clinical Relevance: IP seems to have no clinically relevant impact on the majority of cases, except from those of single narrow Ti TL implants, which may have an increased risk for mechanical complications. This should be considered for peri-implantitis treatment planning (e.g., communication of potential complications to the patient), but also in the planning of implant installation (e.g., choosing TiZr instead of Ti for narrow implants).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7966130PMC
http://dx.doi.org/10.1007/s00784-020-03534-8DOI Listing

Publication Analysis

Top Keywords

failure strength
24
implant failure
20
maximum implant
16
implants subjected
16
narrow implants
16
implants
14
regular diameter
12
implant
12
implant type/design
12
type/design diameter
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!