A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dispersive Liquid-Liquid Microextraction Combined with Microwave Demulsification for Determination of FAME Residuals in Biodiesel Wastewater. | LitMetric

Biodiesel consists of various fatty acid methyl esters (FAMEs) that are mainly produced through transesterification of plant oil or animal fat. It is essential for biodiesel to be purified utmostly to meet its product standard before being traded, while the universal purification method has been water washing. However, water washing inevitably causes the residual of FAMEs in wastewater, which represents a loss of industrial profits. For the purpose of determination and monitoring of the FAME profile in wastewater, there is a necessity to develop a fast and reliable approach with small volume of sample in need. Hence, in this study, a combination of dispersive liquid-liquid microextraction (DLLME) and microwave demulsification is applied for the enrichment of residual FAMEs in water, followed by qualitative and quantitative analyses using gas chromatography-mass spectrometry. The results indicate that the optimal extractant in DLLME approach is toluene. And the optimal parameters are 20 mL of water sample, 80 μL of toluene as the extractant, 60 s of ultrasonic irradiation duration, 200 W of microwave power and 2 min of microwave irradiation duration. The standard curves and linear equations obtained with these conditions are used for the quantitative analysis of biodiesel wastewater, which reveals that there was 50.35 mg·L-1 of the total FAME residuals in wastewater. To the best of our knowledge, it is for the first time that the combined technique of DLLME and microwave demulsification is applied in determination of residual FAMEs in water samples. The proposed method corresponds to small volumes of sample and extractant and short analytical period. It also has the potential to be extended to the analysis of other water pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1093/chromsci/bmaa062DOI Listing

Publication Analysis

Top Keywords

microwave demulsification
12
residual fames
12
dispersive liquid-liquid
8
liquid-liquid microextraction
8
fame residuals
8
biodiesel wastewater
8
water washing
8
dllme microwave
8
demulsification applied
8
fames water
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!