The activity concentrations of U, Ra and Pb were modelled in Pinus sylvestris (Scots pine trees) on a uniform CaF sludge heap in Belgium. The aim of this work is to enhance the knowledge of how transfer factors behave in NORM landfills. The simplest possible model in radioecology is used, which is based on Concentration Ratios (CR-s) measured in equilibrium and activity concentrations of the above-mentioned radionuclides measured in the substrate where pine trees grow. Two alternative CR-s were used: (1) international CR compilations by the IAEA (2014) and (2) CR-s specifically determined for pine trees studied in British Columbia (Mahon and Mathews, 1983). Both CR-s were applied assuming lognormal distributions fitted from data reported in the literature. The results were compared with activity concentrations measured in trees sampled on-site. Modelled concentrations match the measured ones best in the case of U. For the studied NORM waste site, the approach using generic IAEA concentration ratios does not fulfill the conservatism requirement in the cases of U and Ra, as the concentration of radionuclides in trees is underestimated. On the other hand, the ratios from Mahon and Mathews, (1983) produce wide distributions, ensuring conservatism due to larger CR-s. The measured concentrations are narrowly distributed in general, which can be expected on a small sampling site on a uniform substrate. The generic approach outlined here is practical but, as a result of the uniqueness of the site considered, should be applied cautiously in other NORM situations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvrad.2020.106315 | DOI Listing |
Clin Pharmacokinet
January 2025
Clinical Pharmacology and Toxicology Service, Anesthesiology, Pharmacology and Intensive Care Department, Geneva University Hospitals, 4 Rue Gabrielle Perret-Gentil, 1205, Geneva, Switzerland.
Background And Objective: Fexofenadine is commonly used as a probe substrate to assess P-glycoprotein (Pgp) activity. While its use in healthy volunteers is well documented, data in older adult and polymorbid patients are lacking. Age- and disease-related physiological changes are expected to affect the pharmacokinetics of fexofenadine.
View Article and Find Full Text PDFFish Physiol Biochem
January 2025
Department of Biological Sciences, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia.
High cadmium (Cd) concentrations pose a threat to aquatic life globally. This study examined the efficiency of adding purslane (Portulaca oleracea L.) leaf powder (PLP) to Oreochromis niloticus diets on Cd's negative effects.
View Article and Find Full Text PDFLett Appl Microbiol
January 2025
Shenzhen Academy of Metrology & Quality Inspection, Shenzhen, China.
Bongkrekic acid (BA) toxin, produced by Burkholderia gladioli pathovar cocovenenans bacteria, has been implicated in foodborne illness outbreaks. BA poisoning is associated with rice noodle consumption; hence, this study investigated B. cocovenenans growth and BA production in wet rice noodles comprising varying starch ratios, starch types, rice nutrients, and saccharides.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany.
Background: Despite a phenylalanine (Phe) restrictive diet, most adult patients with 'classical' phenylketonuria (PKU) maintain life-long Phe concentrations above the normal range and receive tyrosine (Tyr) and protein-enriched diets to maintain acceptable concentrations and ensure normal development. While these interventions are highly successful in preventing adverse neuropsychiatric complications, their long- term consequences are incompletely explored. We observed early cardiomyopathic characteristics and associated hemodynamic changes in adult PKU patients and present here the results of a longitudinal evaluation of cardiac phenotype.
View Article and Find Full Text PDFAdv Mater
January 2025
Príncipe Felipe Research Center, Polymer Therapeutics Lab., Valencia, 46012, Spain.
Mitochondria play critical roles in regulating cell fate, with dysfunction correlating with the development of multiple diseases, emphasizing the need for engineered nanomedicines that cross biological barriers. Said nanomedicines often target fluctuating mitochondrial properties and/or present inefficient/insufficient cytosolic delivery (resulting in poor overall activity), while many require complex synthetic procedures involving targeting residues (hindering clinical translation). The synthesis/characterization of polypeptide-based cell penetrating diblock copolymers of poly-L-ornithine (PLO) and polyproline (PLP) (PLO-PLP, n:m ratio 1:3) are described as mitochondria-targeting nanocarriers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!